Metamath Proof Explorer


Theorem upgrreslem

Description: Lemma for upgrres . (Contributed by AV, 27-Nov-2020) (Revised by AV, 19-Dec-2021)

Ref Expression
Hypotheses upgrres.v V = Vtx G
upgrres.e E = iEdg G
upgrres.f F = i dom E | N E i
Assertion upgrreslem G UPGraph N V ran E F p 𝒫 V N | p 2

Proof

Step Hyp Ref Expression
1 upgrres.v V = Vtx G
2 upgrres.e E = iEdg G
3 upgrres.f F = i dom E | N E i
4 df-ima E F = ran E F
5 fveq2 i = j E i = E j
6 neleq2 E i = E j N E i N E j
7 5 6 syl i = j N E i N E j
8 7 3 elrab2 j F j dom E N E j
9 1 2 upgrf G UPGraph E : dom E p 𝒫 V | p 2
10 ffvelrn E : dom E p 𝒫 V | p 2 j dom E E j p 𝒫 V | p 2
11 fveq2 p = E j p = E j
12 11 breq1d p = E j p 2 E j 2
13 12 elrab E j p 𝒫 V | p 2 E j 𝒫 V E j 2
14 eldifsn E j 𝒫 V E j 𝒫 V E j
15 simpl E j 𝒫 V N E j E j 𝒫 V
16 elpwi E j 𝒫 V E j V
17 16 adantr E j 𝒫 V N E j E j V
18 simpr E j 𝒫 V N E j N E j
19 elpwdifsn E j 𝒫 V E j V N E j E j 𝒫 V N
20 15 17 18 19 syl3anc E j 𝒫 V N E j E j 𝒫 V N
21 20 ex E j 𝒫 V N E j E j 𝒫 V N
22 21 adantr E j 𝒫 V E j N E j E j 𝒫 V N
23 14 22 sylbi E j 𝒫 V N E j E j 𝒫 V N
24 23 adantr E j 𝒫 V E j 2 N E j E j 𝒫 V N
25 24 imp E j 𝒫 V E j 2 N E j E j 𝒫 V N
26 eldifsni E j 𝒫 V E j
27 26 adantr E j 𝒫 V E j 2 E j
28 27 adantr E j 𝒫 V E j 2 N E j E j
29 eldifsn E j 𝒫 V N E j 𝒫 V N E j
30 25 28 29 sylanbrc E j 𝒫 V E j 2 N E j E j 𝒫 V N
31 simpr E j 𝒫 V E j 2 E j 2
32 31 adantr E j 𝒫 V E j 2 N E j E j 2
33 12 30 32 elrabd E j 𝒫 V E j 2 N E j E j p 𝒫 V N | p 2
34 33 ex E j 𝒫 V E j 2 N E j E j p 𝒫 V N | p 2
35 34 a1d E j 𝒫 V E j 2 N V N E j E j p 𝒫 V N | p 2
36 13 35 sylbi E j p 𝒫 V | p 2 N V N E j E j p 𝒫 V N | p 2
37 10 36 syl E : dom E p 𝒫 V | p 2 j dom E N V N E j E j p 𝒫 V N | p 2
38 37 ex E : dom E p 𝒫 V | p 2 j dom E N V N E j E j p 𝒫 V N | p 2
39 38 com23 E : dom E p 𝒫 V | p 2 N V j dom E N E j E j p 𝒫 V N | p 2
40 9 39 syl G UPGraph N V j dom E N E j E j p 𝒫 V N | p 2
41 40 imp4b G UPGraph N V j dom E N E j E j p 𝒫 V N | p 2
42 8 41 syl5bi G UPGraph N V j F E j p 𝒫 V N | p 2
43 42 ralrimiv G UPGraph N V j F E j p 𝒫 V N | p 2
44 upgruhgr G UPGraph G UHGraph
45 2 uhgrfun G UHGraph Fun E
46 44 45 syl G UPGraph Fun E
47 46 adantr G UPGraph N V Fun E
48 3 ssrab3 F dom E
49 funimass4 Fun E F dom E E F p 𝒫 V N | p 2 j F E j p 𝒫 V N | p 2
50 47 48 49 sylancl G UPGraph N V E F p 𝒫 V N | p 2 j F E j p 𝒫 V N | p 2
51 43 50 mpbird G UPGraph N V E F p 𝒫 V N | p 2
52 4 51 eqsstrrid G UPGraph N V ran E F p 𝒫 V N | p 2