Metamath Proof Explorer


Theorem upgrspan

Description: A spanning subgraph S of a pseudograph G is a pseudograph. (Contributed by AV, 11-Oct-2020) (Proof shortened by AV, 18-Nov-2020)

Ref Expression
Hypotheses uhgrspan.v V = Vtx G
uhgrspan.e E = iEdg G
uhgrspan.s φ S W
uhgrspan.q φ Vtx S = V
uhgrspan.r φ iEdg S = E A
upgrspan.g φ G UPGraph
Assertion upgrspan φ S UPGraph

Proof

Step Hyp Ref Expression
1 uhgrspan.v V = Vtx G
2 uhgrspan.e E = iEdg G
3 uhgrspan.s φ S W
4 uhgrspan.q φ Vtx S = V
5 uhgrspan.r φ iEdg S = E A
6 upgrspan.g φ G UPGraph
7 upgruhgr G UPGraph G UHGraph
8 6 7 syl φ G UHGraph
9 1 2 3 4 5 8 uhgrspansubgr φ S SubGraph G
10 subupgr G UPGraph S SubGraph G S UPGraph
11 6 9 10 syl2anc φ S UPGraph