Metamath Proof Explorer


Theorem upgrtrls

Description: The set of trails in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 7-Jan-2021)

Ref Expression
Hypotheses upgrtrls.v V = Vtx G
upgrtrls.i I = iEdg G
Assertion upgrtrls G UPGraph Trails G = f p | f Word dom I Fun f -1 p : 0 f V k 0 ..^ f I f k = p k p k + 1

Proof

Step Hyp Ref Expression
1 upgrtrls.v V = Vtx G
2 upgrtrls.i I = iEdg G
3 trlsfval Trails G = f p | f Walks G p Fun f -1
4 1 2 upgriswlk G UPGraph f Walks G p f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1
5 4 anbi1d G UPGraph f Walks G p Fun f -1 f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1 Fun f -1
6 an32 f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1 Fun f -1 f Word dom I Fun f -1 p : 0 f V k 0 ..^ f I f k = p k p k + 1
7 3anass f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1 f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1
8 7 anbi1i f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1 Fun f -1 f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1 Fun f -1
9 3anass f Word dom I Fun f -1 p : 0 f V k 0 ..^ f I f k = p k p k + 1 f Word dom I Fun f -1 p : 0 f V k 0 ..^ f I f k = p k p k + 1
10 6 8 9 3bitr4i f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1 Fun f -1 f Word dom I Fun f -1 p : 0 f V k 0 ..^ f I f k = p k p k + 1
11 5 10 bitrdi G UPGraph f Walks G p Fun f -1 f Word dom I Fun f -1 p : 0 f V k 0 ..^ f I f k = p k p k + 1
12 11 opabbidv G UPGraph f p | f Walks G p Fun f -1 = f p | f Word dom I Fun f -1 p : 0 f V k 0 ..^ f I f k = p k p k + 1
13 3 12 syl5eq G UPGraph Trails G = f p | f Word dom I Fun f -1 p : 0 f V k 0 ..^ f I f k = p k p k + 1