Metamath Proof Explorer


Theorem upgruhgr

Description: An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 10-Oct-2020)

Ref Expression
Assertion upgruhgr G UPGraph G UHGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid iEdg G = iEdg G
3 1 2 upgrf G UPGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x 2
4 ssrab2 x 𝒫 Vtx G | x 2 𝒫 Vtx G
5 fss iEdg G : dom iEdg G x 𝒫 Vtx G | x 2 x 𝒫 Vtx G | x 2 𝒫 Vtx G iEdg G : dom iEdg G 𝒫 Vtx G
6 3 4 5 sylancl G UPGraph iEdg G : dom iEdg G 𝒫 Vtx G
7 1 2 isuhgr G UPGraph G UHGraph iEdg G : dom iEdg G 𝒫 Vtx G
8 6 7 mpbird G UPGraph G UHGraph