Metamath Proof Explorer


Theorem upgrun

Description: The union U of two pseudographs G and H with the same vertex set V is a pseudograph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 12-Oct-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses upgrun.g φGUPGraph
upgrun.h φHUPGraph
upgrun.e E=iEdgG
upgrun.f F=iEdgH
upgrun.vg V=VtxG
upgrun.vh φVtxH=V
upgrun.i φdomEdomF=
upgrun.u φUW
upgrun.v φVtxU=V
upgrun.un φiEdgU=EF
Assertion upgrun φUUPGraph

Proof

Step Hyp Ref Expression
1 upgrun.g φGUPGraph
2 upgrun.h φHUPGraph
3 upgrun.e E=iEdgG
4 upgrun.f F=iEdgH
5 upgrun.vg V=VtxG
6 upgrun.vh φVtxH=V
7 upgrun.i φdomEdomF=
8 upgrun.u φUW
9 upgrun.v φVtxU=V
10 upgrun.un φiEdgU=EF
11 5 3 upgrf GUPGraphE:domEx𝒫V|x2
12 1 11 syl φE:domEx𝒫V|x2
13 eqid VtxH=VtxH
14 13 4 upgrf HUPGraphF:domFx𝒫VtxH|x2
15 2 14 syl φF:domFx𝒫VtxH|x2
16 6 eqcomd φV=VtxH
17 16 pweqd φ𝒫V=𝒫VtxH
18 17 difeq1d φ𝒫V=𝒫VtxH
19 18 rabeqdv φx𝒫V|x2=x𝒫VtxH|x2
20 19 feq3d φF:domFx𝒫V|x2F:domFx𝒫VtxH|x2
21 15 20 mpbird φF:domFx𝒫V|x2
22 12 21 7 fun2d φEF:domEdomFx𝒫V|x2
23 10 dmeqd φdomiEdgU=domEF
24 dmun domEF=domEdomF
25 23 24 eqtrdi φdomiEdgU=domEdomF
26 9 pweqd φ𝒫VtxU=𝒫V
27 26 difeq1d φ𝒫VtxU=𝒫V
28 27 rabeqdv φx𝒫VtxU|x2=x𝒫V|x2
29 10 25 28 feq123d φiEdgU:domiEdgUx𝒫VtxU|x2EF:domEdomFx𝒫V|x2
30 22 29 mpbird φiEdgU:domiEdgUx𝒫VtxU|x2
31 eqid VtxU=VtxU
32 eqid iEdgU=iEdgU
33 31 32 isupgr UWUUPGraphiEdgU:domiEdgUx𝒫VtxU|x2
34 8 33 syl φUUPGraphiEdgU:domiEdgUx𝒫VtxU|x2
35 30 34 mpbird φUUPGraph