Metamath Proof Explorer


Theorem upgrun

Description: The union U of two pseudographs G and H with the same vertex set V is a pseudograph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 12-Oct-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses upgrun.g φ G UPGraph
upgrun.h φ H UPGraph
upgrun.e E = iEdg G
upgrun.f F = iEdg H
upgrun.vg V = Vtx G
upgrun.vh φ Vtx H = V
upgrun.i φ dom E dom F =
upgrun.u φ U W
upgrun.v φ Vtx U = V
upgrun.un φ iEdg U = E F
Assertion upgrun φ U UPGraph

Proof

Step Hyp Ref Expression
1 upgrun.g φ G UPGraph
2 upgrun.h φ H UPGraph
3 upgrun.e E = iEdg G
4 upgrun.f F = iEdg H
5 upgrun.vg V = Vtx G
6 upgrun.vh φ Vtx H = V
7 upgrun.i φ dom E dom F =
8 upgrun.u φ U W
9 upgrun.v φ Vtx U = V
10 upgrun.un φ iEdg U = E F
11 5 3 upgrf G UPGraph E : dom E x 𝒫 V | x 2
12 1 11 syl φ E : dom E x 𝒫 V | x 2
13 eqid Vtx H = Vtx H
14 13 4 upgrf H UPGraph F : dom F x 𝒫 Vtx H | x 2
15 2 14 syl φ F : dom F x 𝒫 Vtx H | x 2
16 6 eqcomd φ V = Vtx H
17 16 pweqd φ 𝒫 V = 𝒫 Vtx H
18 17 difeq1d φ 𝒫 V = 𝒫 Vtx H
19 18 rabeqdv φ x 𝒫 V | x 2 = x 𝒫 Vtx H | x 2
20 19 feq3d φ F : dom F x 𝒫 V | x 2 F : dom F x 𝒫 Vtx H | x 2
21 15 20 mpbird φ F : dom F x 𝒫 V | x 2
22 12 21 7 fun2d φ E F : dom E dom F x 𝒫 V | x 2
23 10 dmeqd φ dom iEdg U = dom E F
24 dmun dom E F = dom E dom F
25 23 24 eqtrdi φ dom iEdg U = dom E dom F
26 9 pweqd φ 𝒫 Vtx U = 𝒫 V
27 26 difeq1d φ 𝒫 Vtx U = 𝒫 V
28 27 rabeqdv φ x 𝒫 Vtx U | x 2 = x 𝒫 V | x 2
29 10 25 28 feq123d φ iEdg U : dom iEdg U x 𝒫 Vtx U | x 2 E F : dom E dom F x 𝒫 V | x 2
30 22 29 mpbird φ iEdg U : dom iEdg U x 𝒫 Vtx U | x 2
31 eqid Vtx U = Vtx U
32 eqid iEdg U = iEdg U
33 31 32 isupgr U W U UPGraph iEdg U : dom iEdg U x 𝒫 Vtx U | x 2
34 8 33 syl φ U UPGraph iEdg U : dom iEdg U x 𝒫 Vtx U | x 2
35 30 34 mpbird φ U UPGraph