Metamath Proof Explorer


Theorem uptx

Description: Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses uptx.1 T = R × t S
uptx.2 X = R
uptx.3 Y = S
uptx.4 Z = X × Y
uptx.5 P = 1 st Z
uptx.6 Q = 2 nd Z
Assertion uptx F U Cn R G U Cn S ∃! h U Cn T F = P h G = Q h

Proof

Step Hyp Ref Expression
1 uptx.1 T = R × t S
2 uptx.2 X = R
3 uptx.3 Y = S
4 uptx.4 Z = X × Y
5 uptx.5 P = 1 st Z
6 uptx.6 Q = 2 nd Z
7 eqid U = U
8 eqid x U F x G x = x U F x G x
9 7 8 txcnmpt F U Cn R G U Cn S x U F x G x U Cn R × t S
10 1 oveq2i U Cn T = U Cn R × t S
11 9 10 eleqtrrdi F U Cn R G U Cn S x U F x G x U Cn T
12 7 2 cnf F U Cn R F : U X
13 7 3 cnf G U Cn S G : U Y
14 ffn F : U X F Fn U
15 14 adantr F : U X G : U Y F Fn U
16 fo1st 1 st : V onto V
17 fofn 1 st : V onto V 1 st Fn V
18 16 17 ax-mp 1 st Fn V
19 ssv X × Y V
20 fnssres 1 st Fn V X × Y V 1 st X × Y Fn X × Y
21 18 19 20 mp2an 1 st X × Y Fn X × Y
22 ffvelrn F : U X x U F x X
23 ffvelrn G : U Y x U G x Y
24 opelxpi F x X G x Y F x G x X × Y
25 22 23 24 syl2an F : U X x U G : U Y x U F x G x X × Y
26 25 anandirs F : U X G : U Y x U F x G x X × Y
27 26 fmpttd F : U X G : U Y x U F x G x : U X × Y
28 ffn x U F x G x : U X × Y x U F x G x Fn U
29 27 28 syl F : U X G : U Y x U F x G x Fn U
30 27 frnd F : U X G : U Y ran x U F x G x X × Y
31 fnco 1 st X × Y Fn X × Y x U F x G x Fn U ran x U F x G x X × Y 1 st X × Y x U F x G x Fn U
32 21 29 30 31 mp3an2i F : U X G : U Y 1 st X × Y x U F x G x Fn U
33 fvco3 x U F x G x : U X × Y z U 1 st X × Y x U F x G x z = 1 st X × Y x U F x G x z
34 27 33 sylan F : U X G : U Y z U 1 st X × Y x U F x G x z = 1 st X × Y x U F x G x z
35 fveq2 x = z F x = F z
36 fveq2 x = z G x = G z
37 35 36 opeq12d x = z F x G x = F z G z
38 opex F z G z V
39 37 8 38 fvmpt z U x U F x G x z = F z G z
40 39 adantl F : U X G : U Y z U x U F x G x z = F z G z
41 40 fveq2d F : U X G : U Y z U 1 st X × Y x U F x G x z = 1 st X × Y F z G z
42 ffvelrn F : U X z U F z X
43 ffvelrn G : U Y z U G z Y
44 opelxpi F z X G z Y F z G z X × Y
45 42 43 44 syl2an F : U X z U G : U Y z U F z G z X × Y
46 45 anandirs F : U X G : U Y z U F z G z X × Y
47 46 fvresd F : U X G : U Y z U 1 st X × Y F z G z = 1 st F z G z
48 fvex F z V
49 fvex G z V
50 48 49 op1st 1 st F z G z = F z
51 47 50 eqtrdi F : U X G : U Y z U 1 st X × Y F z G z = F z
52 34 41 51 3eqtrrd F : U X G : U Y z U F z = 1 st X × Y x U F x G x z
53 15 32 52 eqfnfvd F : U X G : U Y F = 1 st X × Y x U F x G x
54 4 reseq2i 1 st Z = 1 st X × Y
55 5 54 eqtri P = 1 st X × Y
56 55 coeq1i P x U F x G x = 1 st X × Y x U F x G x
57 53 56 eqtr4di F : U X G : U Y F = P x U F x G x
58 12 13 57 syl2an F U Cn R G U Cn S F = P x U F x G x
59 ffn G : U Y G Fn U
60 59 adantl F : U X G : U Y G Fn U
61 fo2nd 2 nd : V onto V
62 fofn 2 nd : V onto V 2 nd Fn V
63 61 62 ax-mp 2 nd Fn V
64 fnssres 2 nd Fn V X × Y V 2 nd X × Y Fn X × Y
65 63 19 64 mp2an 2 nd X × Y Fn X × Y
66 fnco 2 nd X × Y Fn X × Y x U F x G x Fn U ran x U F x G x X × Y 2 nd X × Y x U F x G x Fn U
67 65 29 30 66 mp3an2i F : U X G : U Y 2 nd X × Y x U F x G x Fn U
68 fvco3 x U F x G x : U X × Y z U 2 nd X × Y x U F x G x z = 2 nd X × Y x U F x G x z
69 27 68 sylan F : U X G : U Y z U 2 nd X × Y x U F x G x z = 2 nd X × Y x U F x G x z
70 40 fveq2d F : U X G : U Y z U 2 nd X × Y x U F x G x z = 2 nd X × Y F z G z
71 46 fvresd F : U X G : U Y z U 2 nd X × Y F z G z = 2 nd F z G z
72 48 49 op2nd 2 nd F z G z = G z
73 71 72 eqtrdi F : U X G : U Y z U 2 nd X × Y F z G z = G z
74 69 70 73 3eqtrrd F : U X G : U Y z U G z = 2 nd X × Y x U F x G x z
75 60 67 74 eqfnfvd F : U X G : U Y G = 2 nd X × Y x U F x G x
76 4 reseq2i 2 nd Z = 2 nd X × Y
77 6 76 eqtri Q = 2 nd X × Y
78 77 coeq1i Q x U F x G x = 2 nd X × Y x U F x G x
79 75 78 eqtr4di F : U X G : U Y G = Q x U F x G x
80 12 13 79 syl2an F U Cn R G U Cn S G = Q x U F x G x
81 11 58 80 jca32 F U Cn R G U Cn S x U F x G x U Cn T F = P x U F x G x G = Q x U F x G x
82 eleq1 h = x U F x G x h U Cn T x U F x G x U Cn T
83 coeq2 h = x U F x G x P h = P x U F x G x
84 83 eqeq2d h = x U F x G x F = P h F = P x U F x G x
85 coeq2 h = x U F x G x Q h = Q x U F x G x
86 85 eqeq2d h = x U F x G x G = Q h G = Q x U F x G x
87 84 86 anbi12d h = x U F x G x F = P h G = Q h F = P x U F x G x G = Q x U F x G x
88 82 87 anbi12d h = x U F x G x h U Cn T F = P h G = Q h x U F x G x U Cn T F = P x U F x G x G = Q x U F x G x
89 88 spcegv x U F x G x U Cn T x U F x G x U Cn T F = P x U F x G x G = Q x U F x G x h h U Cn T F = P h G = Q h
90 11 81 89 sylc F U Cn R G U Cn S h h U Cn T F = P h G = Q h
91 eqid T = T
92 7 91 cnf h U Cn T h : U T
93 cntop2 F U Cn R R Top
94 cntop2 G U Cn S S Top
95 1 unieqi T = R × t S
96 2 3 txuni R Top S Top X × Y = R × t S
97 95 96 eqtr4id R Top S Top T = X × Y
98 93 94 97 syl2an F U Cn R G U Cn S T = X × Y
99 98 feq3d F U Cn R G U Cn S h : U T h : U X × Y
100 92 99 syl5ib F U Cn R G U Cn S h U Cn T h : U X × Y
101 100 anim1d F U Cn R G U Cn S h U Cn T F = P h G = Q h h : U X × Y F = P h G = Q h
102 3anass h : U X × Y F = P h G = Q h h : U X × Y F = P h G = Q h
103 101 102 syl6ibr F U Cn R G U Cn S h U Cn T F = P h G = Q h h : U X × Y F = P h G = Q h
104 103 alrimiv F U Cn R G U Cn S h h U Cn T F = P h G = Q h h : U X × Y F = P h G = Q h
105 cntop1 F U Cn R U Top
106 105 uniexd F U Cn R U V
107 55 77 upxp U V F : U X G : U Y ∃! h h : U X × Y F = P h G = Q h
108 106 12 13 107 syl2an3an F U Cn R G U Cn S ∃! h h : U X × Y F = P h G = Q h
109 eumo ∃! h h : U X × Y F = P h G = Q h * h h : U X × Y F = P h G = Q h
110 108 109 syl F U Cn R G U Cn S * h h : U X × Y F = P h G = Q h
111 moim h h U Cn T F = P h G = Q h h : U X × Y F = P h G = Q h * h h : U X × Y F = P h G = Q h * h h U Cn T F = P h G = Q h
112 104 110 111 sylc F U Cn R G U Cn S * h h U Cn T F = P h G = Q h
113 df-reu ∃! h U Cn T F = P h G = Q h ∃! h h U Cn T F = P h G = Q h
114 df-eu ∃! h h U Cn T F = P h G = Q h h h U Cn T F = P h G = Q h * h h U Cn T F = P h G = Q h
115 113 114 bitri ∃! h U Cn T F = P h G = Q h h h U Cn T F = P h G = Q h * h h U Cn T F = P h G = Q h
116 90 112 115 sylanbrc F U Cn R G U Cn S ∃! h U Cn T F = P h G = Q h