Metamath Proof Explorer


Theorem upxp

Description: Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses upxp.1 P = 1 st B × C
upxp.2 Q = 2 nd B × C
Assertion upxp A D F : A B G : A C ∃! h h : A B × C F = P h G = Q h

Proof

Step Hyp Ref Expression
1 upxp.1 P = 1 st B × C
2 upxp.2 Q = 2 nd B × C
3 mptexg A D x A F x G x V
4 eueq x A F x G x V ∃! h h = x A F x G x
5 3 4 sylib A D ∃! h h = x A F x G x
6 5 3ad2ant1 A D F : A B G : A C ∃! h h = x A F x G x
7 ffn h : A B × C h Fn A
8 7 3ad2ant1 h : A B × C F = P h G = Q h h Fn A
9 8 adantl A D F : A B G : A C h : A B × C F = P h G = Q h h Fn A
10 ffvelrn F : A B x A F x B
11 ffvelrn G : A C x A G x C
12 opelxpi F x B G x C F x G x B × C
13 10 11 12 syl2an F : A B x A G : A C x A F x G x B × C
14 13 anandirs F : A B G : A C x A F x G x B × C
15 14 ralrimiva F : A B G : A C x A F x G x B × C
16 15 3adant1 A D F : A B G : A C x A F x G x B × C
17 eqid x A F x G x = x A F x G x
18 17 fmpt x A F x G x B × C x A F x G x : A B × C
19 16 18 sylib A D F : A B G : A C x A F x G x : A B × C
20 19 ffnd A D F : A B G : A C x A F x G x Fn A
21 20 adantr A D F : A B G : A C h : A B × C F = P h G = Q h x A F x G x Fn A
22 xpss B × C V × V
23 ffvelrn h : A B × C z A h z B × C
24 22 23 sselid h : A B × C z A h z V × V
25 24 3ad2antl1 h : A B × C F = P h G = Q h z A h z V × V
26 25 adantll A D F : A B G : A C h : A B × C F = P h G = Q h z A h z V × V
27 fveq1 F = P h F z = P h z
28 1 coeq1i P h = 1 st B × C h
29 28 fveq1i P h z = 1 st B × C h z
30 27 29 eqtrdi F = P h F z = 1 st B × C h z
31 30 3ad2ant2 h : A B × C F = P h G = Q h F z = 1 st B × C h z
32 31 ad2antlr A D F : A B G : A C h : A B × C F = P h G = Q h z A F z = 1 st B × C h z
33 simpr1 A D F : A B G : A C h : A B × C F = P h G = Q h h : A B × C
34 fvco3 h : A B × C z A 1 st B × C h z = 1 st B × C h z
35 33 34 sylan A D F : A B G : A C h : A B × C F = P h G = Q h z A 1 st B × C h z = 1 st B × C h z
36 23 3ad2antl1 h : A B × C F = P h G = Q h z A h z B × C
37 36 adantll A D F : A B G : A C h : A B × C F = P h G = Q h z A h z B × C
38 37 fvresd A D F : A B G : A C h : A B × C F = P h G = Q h z A 1 st B × C h z = 1 st h z
39 32 35 38 3eqtrrd A D F : A B G : A C h : A B × C F = P h G = Q h z A 1 st h z = F z
40 fveq1 G = Q h G z = Q h z
41 2 coeq1i Q h = 2 nd B × C h
42 41 fveq1i Q h z = 2 nd B × C h z
43 40 42 eqtrdi G = Q h G z = 2 nd B × C h z
44 43 3ad2ant3 h : A B × C F = P h G = Q h G z = 2 nd B × C h z
45 44 ad2antlr A D F : A B G : A C h : A B × C F = P h G = Q h z A G z = 2 nd B × C h z
46 fvco3 h : A B × C z A 2 nd B × C h z = 2 nd B × C h z
47 33 46 sylan A D F : A B G : A C h : A B × C F = P h G = Q h z A 2 nd B × C h z = 2 nd B × C h z
48 37 fvresd A D F : A B G : A C h : A B × C F = P h G = Q h z A 2 nd B × C h z = 2 nd h z
49 45 47 48 3eqtrrd A D F : A B G : A C h : A B × C F = P h G = Q h z A 2 nd h z = G z
50 eqopi h z V × V 1 st h z = F z 2 nd h z = G z h z = F z G z
51 26 39 49 50 syl12anc A D F : A B G : A C h : A B × C F = P h G = Q h z A h z = F z G z
52 fveq2 x = z F x = F z
53 fveq2 x = z G x = G z
54 52 53 opeq12d x = z F x G x = F z G z
55 opex F z G z V
56 54 17 55 fvmpt z A x A F x G x z = F z G z
57 56 adantl A D F : A B G : A C h : A B × C F = P h G = Q h z A x A F x G x z = F z G z
58 51 57 eqtr4d A D F : A B G : A C h : A B × C F = P h G = Q h z A h z = x A F x G x z
59 9 21 58 eqfnfvd A D F : A B G : A C h : A B × C F = P h G = Q h h = x A F x G x
60 59 ex A D F : A B G : A C h : A B × C F = P h G = Q h h = x A F x G x
61 ffn F : A B F Fn A
62 61 3ad2ant2 A D F : A B G : A C F Fn A
63 fo1st 1 st : V onto V
64 fofn 1 st : V onto V 1 st Fn V
65 63 64 ax-mp 1 st Fn V
66 ssv B × C V
67 fnssres 1 st Fn V B × C V 1 st B × C Fn B × C
68 65 66 67 mp2an 1 st B × C Fn B × C
69 19 frnd A D F : A B G : A C ran x A F x G x B × C
70 fnco 1 st B × C Fn B × C x A F x G x Fn A ran x A F x G x B × C 1 st B × C x A F x G x Fn A
71 68 20 69 70 mp3an2i A D F : A B G : A C 1 st B × C x A F x G x Fn A
72 fvco3 x A F x G x : A B × C z A 1 st B × C x A F x G x z = 1 st B × C x A F x G x z
73 19 72 sylan A D F : A B G : A C z A 1 st B × C x A F x G x z = 1 st B × C x A F x G x z
74 56 adantl A D F : A B G : A C z A x A F x G x z = F z G z
75 74 fveq2d A D F : A B G : A C z A 1 st B × C x A F x G x z = 1 st B × C F z G z
76 ffvelrn F : A B z A F z B
77 ffvelrn G : A C z A G z C
78 opelxpi F z B G z C F z G z B × C
79 76 77 78 syl2an F : A B z A G : A C z A F z G z B × C
80 79 anandirs F : A B G : A C z A F z G z B × C
81 80 3adantl1 A D F : A B G : A C z A F z G z B × C
82 81 fvresd A D F : A B G : A C z A 1 st B × C F z G z = 1 st F z G z
83 fvex F z V
84 fvex G z V
85 83 84 op1st 1 st F z G z = F z
86 82 85 eqtrdi A D F : A B G : A C z A 1 st B × C F z G z = F z
87 73 75 86 3eqtrrd A D F : A B G : A C z A F z = 1 st B × C x A F x G x z
88 62 71 87 eqfnfvd A D F : A B G : A C F = 1 st B × C x A F x G x
89 1 coeq1i P x A F x G x = 1 st B × C x A F x G x
90 88 89 eqtr4di A D F : A B G : A C F = P x A F x G x
91 ffn G : A C G Fn A
92 91 3ad2ant3 A D F : A B G : A C G Fn A
93 fo2nd 2 nd : V onto V
94 fofn 2 nd : V onto V 2 nd Fn V
95 93 94 ax-mp 2 nd Fn V
96 fnssres 2 nd Fn V B × C V 2 nd B × C Fn B × C
97 95 66 96 mp2an 2 nd B × C Fn B × C
98 fnco 2 nd B × C Fn B × C x A F x G x Fn A ran x A F x G x B × C 2 nd B × C x A F x G x Fn A
99 97 20 69 98 mp3an2i A D F : A B G : A C 2 nd B × C x A F x G x Fn A
100 fvco3 x A F x G x : A B × C z A 2 nd B × C x A F x G x z = 2 nd B × C x A F x G x z
101 19 100 sylan A D F : A B G : A C z A 2 nd B × C x A F x G x z = 2 nd B × C x A F x G x z
102 74 fveq2d A D F : A B G : A C z A 2 nd B × C x A F x G x z = 2 nd B × C F z G z
103 81 fvresd A D F : A B G : A C z A 2 nd B × C F z G z = 2 nd F z G z
104 83 84 op2nd 2 nd F z G z = G z
105 103 104 eqtrdi A D F : A B G : A C z A 2 nd B × C F z G z = G z
106 101 102 105 3eqtrrd A D F : A B G : A C z A G z = 2 nd B × C x A F x G x z
107 92 99 106 eqfnfvd A D F : A B G : A C G = 2 nd B × C x A F x G x
108 2 coeq1i Q x A F x G x = 2 nd B × C x A F x G x
109 107 108 eqtr4di A D F : A B G : A C G = Q x A F x G x
110 19 90 109 3jca A D F : A B G : A C x A F x G x : A B × C F = P x A F x G x G = Q x A F x G x
111 feq1 h = x A F x G x h : A B × C x A F x G x : A B × C
112 coeq2 h = x A F x G x P h = P x A F x G x
113 112 eqeq2d h = x A F x G x F = P h F = P x A F x G x
114 coeq2 h = x A F x G x Q h = Q x A F x G x
115 114 eqeq2d h = x A F x G x G = Q h G = Q x A F x G x
116 111 113 115 3anbi123d h = x A F x G x h : A B × C F = P h G = Q h x A F x G x : A B × C F = P x A F x G x G = Q x A F x G x
117 110 116 syl5ibrcom A D F : A B G : A C h = x A F x G x h : A B × C F = P h G = Q h
118 60 117 impbid A D F : A B G : A C h : A B × C F = P h G = Q h h = x A F x G x
119 118 eubidv A D F : A B G : A C ∃! h h : A B × C F = P h G = Q h ∃! h h = x A F x G x
120 6 119 mpbird A D F : A B G : A C ∃! h h : A B × C F = P h G = Q h