Step |
Hyp |
Ref |
Expression |
1 |
|
urpropd.b |
|
2 |
|
urpropd.s |
|
3 |
|
urpropd.t |
|
4 |
|
urpropd.1 |
|
5 |
|
urpropd.2 |
|
6 |
4
|
adantr |
|
7 |
5
|
anasss |
|
8 |
7
|
ralrimivva |
|
9 |
8
|
ad2antrr |
|
10 |
|
oveq1 |
|
11 |
|
oveq1 |
|
12 |
10 11
|
eqeq12d |
|
13 |
|
oveq2 |
|
14 |
|
oveq2 |
|
15 |
13 14
|
eqeq12d |
|
16 |
|
simplr |
|
17 |
|
eqidd |
|
18 |
|
simpr |
|
19 |
12 15 16 17 18
|
rspc2vd |
|
20 |
9 19
|
mpd |
|
21 |
20
|
eqeq1d |
|
22 |
|
oveq1 |
|
23 |
|
oveq1 |
|
24 |
22 23
|
eqeq12d |
|
25 |
|
oveq2 |
|
26 |
|
oveq2 |
|
27 |
25 26
|
eqeq12d |
|
28 |
|
eqidd |
|
29 |
24 27 18 28 16
|
rspc2vd |
|
30 |
9 29
|
mpd |
|
31 |
30
|
eqeq1d |
|
32 |
21 31
|
anbi12d |
|
33 |
6 32
|
raleqbidva |
|
34 |
33
|
pm5.32da |
|
35 |
4
|
eleq2d |
|
36 |
35
|
anbi1d |
|
37 |
34 36
|
bitrd |
|
38 |
37
|
iotabidv |
|
39 |
|
eqid |
|
40 |
39 1
|
mgpbas |
|
41 |
|
eqid |
|
42 |
39 41
|
mgpplusg |
|
43 |
|
eqid |
|
44 |
40 42 43
|
grpidval |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
45 46
|
mgpbas |
|
48 |
|
eqid |
|
49 |
45 48
|
mgpplusg |
|
50 |
|
eqid |
|
51 |
47 49 50
|
grpidval |
|
52 |
38 44 51
|
3eqtr4g |
|
53 |
|
eqid |
|
54 |
39 53
|
ringidval |
|
55 |
|
eqid |
|
56 |
45 55
|
ringidval |
|
57 |
52 54 56
|
3eqtr4g |
|