Metamath Proof Explorer


Theorem urpropd

Description: Sufficient condition for ring unities to be equal. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses urpropd.b B = Base S
urpropd.s φ S V
urpropd.t φ T W
urpropd.1 φ B = Base T
urpropd.2 φ x B y B x S y = x T y
Assertion urpropd φ 1 S = 1 T

Proof

Step Hyp Ref Expression
1 urpropd.b B = Base S
2 urpropd.s φ S V
3 urpropd.t φ T W
4 urpropd.1 φ B = Base T
5 urpropd.2 φ x B y B x S y = x T y
6 4 adantr φ e B B = Base T
7 5 anasss φ x B y B x S y = x T y
8 7 ralrimivva φ x B y B x S y = x T y
9 8 ad2antrr φ e B p B x B y B x S y = x T y
10 oveq1 x = e x S y = e S y
11 oveq1 x = e x T y = e T y
12 10 11 eqeq12d x = e x S y = x T y e S y = e T y
13 oveq2 y = p e S y = e S p
14 oveq2 y = p e T y = e T p
15 13 14 eqeq12d y = p e S y = e T y e S p = e T p
16 simplr φ e B p B e B
17 eqidd φ e B p B x = e B = B
18 simpr φ e B p B p B
19 12 15 16 17 18 rspc2vd φ e B p B x B y B x S y = x T y e S p = e T p
20 9 19 mpd φ e B p B e S p = e T p
21 20 eqeq1d φ e B p B e S p = p e T p = p
22 oveq1 x = p x S y = p S y
23 oveq1 x = p x T y = p T y
24 22 23 eqeq12d x = p x S y = x T y p S y = p T y
25 oveq2 y = e p S y = p S e
26 oveq2 y = e p T y = p T e
27 25 26 eqeq12d y = e p S y = p T y p S e = p T e
28 eqidd φ e B p B x = p B = B
29 24 27 18 28 16 rspc2vd φ e B p B x B y B x S y = x T y p S e = p T e
30 9 29 mpd φ e B p B p S e = p T e
31 30 eqeq1d φ e B p B p S e = p p T e = p
32 21 31 anbi12d φ e B p B e S p = p p S e = p e T p = p p T e = p
33 6 32 raleqbidva φ e B p B e S p = p p S e = p p Base T e T p = p p T e = p
34 33 pm5.32da φ e B p B e S p = p p S e = p e B p Base T e T p = p p T e = p
35 4 eleq2d φ e B e Base T
36 35 anbi1d φ e B p Base T e T p = p p T e = p e Base T p Base T e T p = p p T e = p
37 34 36 bitrd φ e B p B e S p = p p S e = p e Base T p Base T e T p = p p T e = p
38 37 iotabidv φ ι e | e B p B e S p = p p S e = p = ι e | e Base T p Base T e T p = p p T e = p
39 eqid mulGrp S = mulGrp S
40 39 1 mgpbas B = Base mulGrp S
41 eqid S = S
42 39 41 mgpplusg S = + mulGrp S
43 eqid 0 mulGrp S = 0 mulGrp S
44 40 42 43 grpidval 0 mulGrp S = ι e | e B p B e S p = p p S e = p
45 eqid mulGrp T = mulGrp T
46 eqid Base T = Base T
47 45 46 mgpbas Base T = Base mulGrp T
48 eqid T = T
49 45 48 mgpplusg T = + mulGrp T
50 eqid 0 mulGrp T = 0 mulGrp T
51 47 49 50 grpidval 0 mulGrp T = ι e | e Base T p Base T e T p = p p T e = p
52 38 44 51 3eqtr4g φ 0 mulGrp S = 0 mulGrp T
53 eqid 1 S = 1 S
54 39 53 ringidval 1 S = 0 mulGrp S
55 eqid 1 T = 1 T
56 45 55 ringidval 1 T = 0 mulGrp T
57 52 54 56 3eqtr4g φ 1 S = 1 T