Metamath Proof Explorer


Theorem usgr0

Description: The null graph represented by an empty set is a simple graph. (Contributed by AV, 16-Oct-2020)

Ref Expression
Assertion usgr0 USGraph

Proof

Step Hyp Ref Expression
1 f10 : 1-1 x 𝒫 | x = 2
2 dm0 dom =
3 f1eq2 dom = : dom 1-1 x 𝒫 | x = 2 : 1-1 x 𝒫 | x = 2
4 2 3 ax-mp : dom 1-1 x 𝒫 | x = 2 : 1-1 x 𝒫 | x = 2
5 1 4 mpbir : dom 1-1 x 𝒫 | x = 2
6 0ex V
7 vtxval0 Vtx =
8 7 eqcomi = Vtx
9 iedgval0 iEdg =
10 9 eqcomi = iEdg
11 8 10 isusgr V USGraph : dom 1-1 x 𝒫 | x = 2
12 6 11 ax-mp USGraph : dom 1-1 x 𝒫 | x = 2
13 5 12 mpbir USGraph