Metamath Proof Explorer


Theorem usgr0e

Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 16-Oct-2020) (Proof shortened by AV, 25-Nov-2020)

Ref Expression
Hypotheses usgr0e.g φ G W
usgr0e.e φ iEdg G =
Assertion usgr0e φ G USGraph

Proof

Step Hyp Ref Expression
1 usgr0e.g φ G W
2 usgr0e.e φ iEdg G =
3 2 f10d φ iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2
4 eqid Vtx G = Vtx G
5 eqid iEdg G = iEdg G
6 4 5 isusgr G W G USGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2
7 1 6 syl φ G USGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2
8 3 7 mpbird φ G USGraph