Metamath Proof Explorer


Theorem usgr1e

Description: A simple graph with one edge (with additional assumption that B =/= C since otherwise the edge is a loop!). (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 18-Oct-2020)

Ref Expression
Hypotheses uspgr1e.v V = Vtx G
uspgr1e.a φ A X
uspgr1e.b φ B V
uspgr1e.c φ C V
uspgr1e.e φ iEdg G = A B C
usgr1e.e φ B C
Assertion usgr1e φ G USGraph

Proof

Step Hyp Ref Expression
1 uspgr1e.v V = Vtx G
2 uspgr1e.a φ A X
3 uspgr1e.b φ B V
4 uspgr1e.c φ C V
5 uspgr1e.e φ iEdg G = A B C
6 usgr1e.e φ B C
7 1 2 3 4 5 uspgr1e φ G USHGraph
8 hashprg B V C V B C B C = 2
9 3 4 8 syl2anc φ B C B C = 2
10 6 9 mpbid φ B C = 2
11 prex B C V
12 fveqeq2 x = B C x = 2 B C = 2
13 11 12 ralsn x B C x = 2 B C = 2
14 10 13 sylibr φ x B C x = 2
15 edgval Edg G = ran iEdg G
16 15 a1i φ Edg G = ran iEdg G
17 5 rneqd φ ran iEdg G = ran A B C
18 rnsnopg A X ran A B C = B C
19 2 18 syl φ ran A B C = B C
20 16 17 19 3eqtrd φ Edg G = B C
21 20 raleqdv φ x Edg G x = 2 x B C x = 2
22 14 21 mpbird φ x Edg G x = 2
23 usgruspgrb G USGraph G USHGraph x Edg G x = 2
24 7 22 23 sylanbrc φ G USGraph