Metamath Proof Explorer


Theorem usgr1vr

Description: A simple graph with one vertex has no edges. (Contributed by AV, 18-Oct-2020) (Revised by AV, 21-Mar-2021) (Proof shortened by AV, 2-Apr-2021)

Ref Expression
Assertion usgr1vr A X Vtx G = A G USGraph iEdg G =

Proof

Step Hyp Ref Expression
1 usgruhgr G USGraph G UHGraph
2 1 adantl A X Vtx G = A G USGraph G UHGraph
3 fveq2 Vtx G = A Vtx G = A
4 hashsng A X A = 1
5 3 4 sylan9eqr A X Vtx G = A Vtx G = 1
6 5 adantr A X Vtx G = A G USGraph Vtx G = 1
7 eqid Vtx G = Vtx G
8 eqid iEdg G = iEdg G
9 7 8 usgrislfuspgr G USGraph G USHGraph iEdg G : dom iEdg G x 𝒫 Vtx G | 2 x
10 9 simprbi G USGraph iEdg G : dom iEdg G x 𝒫 Vtx G | 2 x
11 10 adantl A X Vtx G = A G USGraph iEdg G : dom iEdg G x 𝒫 Vtx G | 2 x
12 eqid x 𝒫 Vtx G | 2 x = x 𝒫 Vtx G | 2 x
13 7 8 12 lfuhgr1v0e G UHGraph Vtx G = 1 iEdg G : dom iEdg G x 𝒫 Vtx G | 2 x Edg G =
14 2 6 11 13 syl3anc A X Vtx G = A G USGraph Edg G =
15 uhgriedg0edg0 G UHGraph Edg G = iEdg G =
16 1 15 syl G USGraph Edg G = iEdg G =
17 16 adantl A X Vtx G = A G USGraph Edg G = iEdg G =
18 14 17 mpbid A X Vtx G = A G USGraph iEdg G =
19 18 ex A X Vtx G = A G USGraph iEdg G =