Metamath Proof Explorer


Theorem usgr2edg

Description: If a vertex is adjacent to two different vertices in a simple graph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Feb-2021)

Ref Expression
Hypotheses usgrf1oedg.i I = iEdg G
usgrf1oedg.e E = Edg G
Assertion usgr2edg G USGraph A B N A E B N E x dom I y dom I x y N I x N I y

Proof

Step Hyp Ref Expression
1 usgrf1oedg.i I = iEdg G
2 usgrf1oedg.e E = Edg G
3 usgrumgr G USGraph G UMGraph
4 1 2 umgr2edg G UMGraph A B N A E B N E x dom I y dom I x y N I x N I y
5 3 4 sylanl1 G USGraph A B N A E B N E x dom I y dom I x y N I x N I y