Metamath Proof Explorer


Theorem usgr2pthspth

Description: In a simple graph, any path of length 2 is a simple path. (Contributed by Alexander van der Vekens, 25-Jan-2018) (Revised by AV, 5-Jun-2021)

Ref Expression
Assertion usgr2pthspth G USGraph F = 2 F Paths G P F SPaths G P

Proof

Step Hyp Ref Expression
1 pthistrl F Paths G P F Trails G P
2 usgr2trlspth G USGraph F = 2 F Trails G P F SPaths G P
3 1 2 syl5ib G USGraph F = 2 F Paths G P F SPaths G P
4 spthispth F SPaths G P F Paths G P
5 3 4 impbid1 G USGraph F = 2 F Paths G P F SPaths G P