Step |
Hyp |
Ref |
Expression |
1 |
|
usgrupgr |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
2 3
|
upgrf1istrl |
|
5 |
1 4
|
syl |
|
6 |
|
eqidd |
|
7 |
|
oveq2 |
|
8 |
|
fzo0to2pr |
|
9 |
7 8
|
eqtrdi |
|
10 |
|
eqidd |
|
11 |
6 9 10
|
f1eq123d |
|
12 |
9
|
raleqdv |
|
13 |
|
2wlklem |
|
14 |
12 13
|
bitrdi |
|
15 |
11 14
|
anbi12d |
|
16 |
15
|
adantl |
|
17 |
|
c0ex |
|
18 |
|
1ex |
|
19 |
17 18
|
pm3.2i |
|
20 |
|
0ne1 |
|
21 |
|
eqid |
|
22 |
21
|
f12dfv |
|
23 |
19 20 22
|
mp2an |
|
24 |
|
eqid |
|
25 |
3 24
|
usgrf1oedg |
|
26 |
|
f1of1 |
|
27 |
|
id |
|
28 |
17
|
prid1 |
|
29 |
28
|
a1i |
|
30 |
27 29
|
ffvelrnd |
|
31 |
18
|
prid2 |
|
32 |
31
|
a1i |
|
33 |
27 32
|
ffvelrnd |
|
34 |
30 33
|
jca |
|
35 |
34
|
anim1ci |
|
36 |
|
f1veqaeq |
|
37 |
35 36
|
syl |
|
38 |
37
|
necon3d |
|
39 |
|
simpl |
|
40 |
|
simpr |
|
41 |
39 40
|
neeq12d |
|
42 |
|
preq1 |
|
43 |
|
prcom |
|
44 |
42 43
|
eqtrdi |
|
45 |
44
|
necon3i |
|
46 |
41 45
|
syl6bi |
|
47 |
46
|
com12 |
|
48 |
47
|
a1d |
|
49 |
38 48
|
syl6 |
|
50 |
49
|
expcom |
|
51 |
50
|
impd |
|
52 |
51
|
com23 |
|
53 |
26 52
|
syl |
|
54 |
25 53
|
mpcom |
|
55 |
23 54
|
syl5bi |
|
56 |
55
|
impd |
|
57 |
56
|
adantr |
|
58 |
16 57
|
sylbid |
|
59 |
58
|
com12 |
|
60 |
59
|
3adant2 |
|
61 |
60
|
expdcom |
|
62 |
61
|
com23 |
|
63 |
5 62
|
sylbid |
|
64 |
63
|
com23 |
|
65 |
64
|
imp |
|