Metamath Proof Explorer


Theorem usgr2trlspth

Description: In a simple graph, any trail of length 2 is a simple path. (Contributed by AV, 5-Jun-2021)

Ref Expression
Assertion usgr2trlspth G USGraph F = 2 F Trails G P F SPaths G P

Proof

Step Hyp Ref Expression
1 usgr2trlncl G USGraph F = 2 F Trails G P P 0 P 2
2 1 imp G USGraph F = 2 F Trails G P P 0 P 2
3 trliswlk F Trails G P F Walks G P
4 wlkonwlk F Walks G P F P 0 WalksOn G P F P
5 simpll G USGraph F = 2 P 0 P 2 G USGraph
6 simplr G USGraph F = 2 P 0 P 2 F = 2
7 fveq2 F = 2 P F = P 2
8 7 eqcomd F = 2 P 2 = P F
9 8 neeq2d F = 2 P 0 P 2 P 0 P F
10 9 biimpd F = 2 P 0 P 2 P 0 P F
11 10 adantl G USGraph F = 2 P 0 P 2 P 0 P F
12 11 imp G USGraph F = 2 P 0 P 2 P 0 P F
13 usgr2wlkspth G USGraph F = 2 P 0 P F F P 0 WalksOn G P F P F P 0 SPathsOn G P F P
14 5 6 12 13 syl3anc G USGraph F = 2 P 0 P 2 F P 0 WalksOn G P F P F P 0 SPathsOn G P F P
15 spthonisspth F P 0 SPathsOn G P F P F SPaths G P
16 14 15 syl6bi G USGraph F = 2 P 0 P 2 F P 0 WalksOn G P F P F SPaths G P
17 16 expcom P 0 P 2 G USGraph F = 2 F P 0 WalksOn G P F P F SPaths G P
18 17 com13 F P 0 WalksOn G P F P G USGraph F = 2 P 0 P 2 F SPaths G P
19 3 4 18 3syl F Trails G P G USGraph F = 2 P 0 P 2 F SPaths G P
20 19 impcom G USGraph F = 2 F Trails G P P 0 P 2 F SPaths G P
21 2 20 mpd G USGraph F = 2 F Trails G P F SPaths G P
22 21 ex G USGraph F = 2 F Trails G P F SPaths G P
23 spthispth F SPaths G P F Paths G P
24 pthistrl F Paths G P F Trails G P
25 23 24 syl F SPaths G P F Trails G P
26 22 25 impbid1 G USGraph F = 2 F Trails G P F SPaths G P