Metamath Proof Explorer


Theorem usgr2v1e2w

Description: A simple graph with two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021)

Ref Expression
Assertion usgr2v1e2w A X B Y A B A B ⟨“ A B ”⟩ USGraph

Proof

Step Hyp Ref Expression
1 prex A B V
2 s1val A B V ⟨“ A B ”⟩ = 0 A B
3 1 2 mp1i A X B Y A B ⟨“ A B ”⟩ = 0 A B
4 3 opeq2d A X B Y A B A B ⟨“ A B ”⟩ = A B 0 A B
5 prid1g A X A A B
6 prid2g B Y B A B
7 5 6 anim12i A X B Y A A B B A B
8 c0ex 0 V
9 1 8 pm3.2i A B V 0 V
10 7 9 jctil A X B Y A B V 0 V A A B B A B
11 usgr1eop A B V 0 V A A B B A B A B A B 0 A B USGraph
12 11 imp A B V 0 V A A B B A B A B A B 0 A B USGraph
13 10 12 stoic3 A X B Y A B A B 0 A B USGraph
14 4 13 eqeltrd A X B Y A B A B ⟨“ A B ”⟩ USGraph