Step |
Hyp |
Ref |
Expression |
1 |
|
usgrupgr |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
2 3
|
upgriswlk |
|
5 |
1 4
|
syl |
|
6 |
|
2wlklem |
|
7 |
|
simplll |
|
8 |
|
fvex |
|
9 |
3
|
usgrnloopv |
|
10 |
7 8 9
|
sylancl |
|
11 |
|
fvex |
|
12 |
3
|
usgrnloopv |
|
13 |
7 11 12
|
sylancl |
|
14 |
10 13
|
anim12d |
|
15 |
|
fveqeq2 |
|
16 |
|
eqtr2 |
|
17 |
|
prcom |
|
18 |
17
|
eqeq2i |
|
19 |
|
fvex |
|
20 |
8 19
|
preqr1 |
|
21 |
18 20
|
sylbi |
|
22 |
16 21
|
syl |
|
23 |
22
|
ex |
|
24 |
15 23
|
syl6bi |
|
25 |
24
|
impd |
|
26 |
25
|
com12 |
|
27 |
26
|
necon3d |
|
28 |
27
|
com12 |
|
29 |
28
|
adantr |
|
30 |
|
simpl |
|
31 |
30
|
adantl |
|
32 |
|
simpl |
|
33 |
|
simprr |
|
34 |
31 32 33
|
3jca |
|
35 |
29 34
|
jctild |
|
36 |
35
|
ex |
|
37 |
36
|
com23 |
|
38 |
37
|
adantl |
|
39 |
38
|
adantr |
|
40 |
14 39
|
mpdd |
|
41 |
6 40
|
syl5bi |
|
42 |
41
|
ex |
|
43 |
42
|
com23 |
|
44 |
43
|
ex |
|
45 |
|
fveq2 |
|
46 |
45
|
neeq2d |
|
47 |
|
oveq2 |
|
48 |
|
fzo0to2pr |
|
49 |
47 48
|
eqtrdi |
|
50 |
49
|
raleqdv |
|
51 |
|
oveq2 |
|
52 |
51
|
feq2d |
|
53 |
52
|
imbi1d |
|
54 |
50 53
|
imbi12d |
|
55 |
46 54
|
imbi12d |
|
56 |
44 55
|
syl5ibrcom |
|
57 |
56
|
impd |
|
58 |
57
|
com24 |
|
59 |
58
|
ex |
|
60 |
59
|
3impd |
|
61 |
5 60
|
sylbid |
|
62 |
61
|
imp31 |
|