Metamath Proof Explorer


Theorem usgr2wspthon

Description: A simple path of length 2 between two vertices corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 9-Mar-2018) (Revised by AV, 17-May-2021)

Ref Expression
Hypotheses usgr2wspthon0.v V = Vtx G
usgr2wspthon0.e E = Edg G
Assertion usgr2wspthon G USGraph A V C V T A 2 WSPathsNOn G C b V T = ⟨“ AbC ”⟩ A C A b E b C E

Proof

Step Hyp Ref Expression
1 usgr2wspthon0.v V = Vtx G
2 usgr2wspthon0.e E = Edg G
3 usgrupgr G USGraph G UPGraph
4 3 adantr G USGraph A V C V G UPGraph
5 simpl A V C V A V
6 5 adantl G USGraph A V C V A V
7 simpr A V C V C V
8 7 adantl G USGraph A V C V C V
9 1 elwspths2on G UPGraph A V C V T A 2 WSPathsNOn G C b V T = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
10 4 6 8 9 syl3anc G USGraph A V C V T A 2 WSPathsNOn G C b V T = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
11 simpl G USGraph A V C V G USGraph
12 11 adantr G USGraph A V C V b V G USGraph
13 simplrl G USGraph A V C V b V A V
14 simpr G USGraph A V C V b V b V
15 simplrr G USGraph A V C V b V C V
16 1 2 usgr2wspthons3 G USGraph A V b V C V ⟨“ AbC ”⟩ A 2 WSPathsNOn G C A C A b E b C E
17 12 13 14 15 16 syl13anc G USGraph A V C V b V ⟨“ AbC ”⟩ A 2 WSPathsNOn G C A C A b E b C E
18 17 anbi2d G USGraph A V C V b V T = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C T = ⟨“ AbC ”⟩ A C A b E b C E
19 anass T = ⟨“ AbC ”⟩ A C A b E b C E T = ⟨“ AbC ”⟩ A C A b E b C E
20 3anass A C A b E b C E A C A b E b C E
21 20 bicomi A C A b E b C E A C A b E b C E
22 21 anbi2i T = ⟨“ AbC ”⟩ A C A b E b C E T = ⟨“ AbC ”⟩ A C A b E b C E
23 19 22 bitri T = ⟨“ AbC ”⟩ A C A b E b C E T = ⟨“ AbC ”⟩ A C A b E b C E
24 18 23 bitr4di G USGraph A V C V b V T = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C T = ⟨“ AbC ”⟩ A C A b E b C E
25 24 rexbidva G USGraph A V C V b V T = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C b V T = ⟨“ AbC ”⟩ A C A b E b C E
26 10 25 bitrd G USGraph A V C V T A 2 WSPathsNOn G C b V T = ⟨“ AbC ”⟩ A C A b E b C E