Metamath Proof Explorer


Theorem usgr2wspthon

Description: A simple path of length 2 between two vertices corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 9-Mar-2018) (Revised by AV, 17-May-2021) (Revised by Ender Ting, 29-Jan-2026)

Ref Expression
Hypotheses usgr2wspthon0.v V = Vtx G
usgr2wspthon0.e E = Edg G
Assertion usgr2wspthon G USGraph A V C V T A 2 WSPathsNOn G C b V T = ⟨“ AbC ”⟩ A C A b E b C E

Proof

Step Hyp Ref Expression
1 usgr2wspthon0.v V = Vtx G
2 usgr2wspthon0.e E = Edg G
3 usgruspgr G USGraph G USHGraph
4 3 adantr G USGraph A V C V G USHGraph
5 simprl G USGraph A V C V A V
6 simprr G USGraph A V C V C V
7 1 elwspths2onw G USHGraph A V C V T A 2 WSPathsNOn G C b V T = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
8 4 5 6 7 syl3anc G USGraph A V C V T A 2 WSPathsNOn G C b V T = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
9 simpl G USGraph A V C V G USGraph
10 9 adantr G USGraph A V C V b V G USGraph
11 simplrl G USGraph A V C V b V A V
12 simpr G USGraph A V C V b V b V
13 simplrr G USGraph A V C V b V C V
14 1 2 usgr2wspthons3 G USGraph A V b V C V ⟨“ AbC ”⟩ A 2 WSPathsNOn G C A C A b E b C E
15 10 11 12 13 14 syl13anc G USGraph A V C V b V ⟨“ AbC ”⟩ A 2 WSPathsNOn G C A C A b E b C E
16 15 anbi2d G USGraph A V C V b V T = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C T = ⟨“ AbC ”⟩ A C A b E b C E
17 anass T = ⟨“ AbC ”⟩ A C A b E b C E T = ⟨“ AbC ”⟩ A C A b E b C E
18 3anass A C A b E b C E A C A b E b C E
19 18 bicomi A C A b E b C E A C A b E b C E
20 19 anbi2i T = ⟨“ AbC ”⟩ A C A b E b C E T = ⟨“ AbC ”⟩ A C A b E b C E
21 17 20 bitri T = ⟨“ AbC ”⟩ A C A b E b C E T = ⟨“ AbC ”⟩ A C A b E b C E
22 16 21 bitr4di G USGraph A V C V b V T = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C T = ⟨“ AbC ”⟩ A C A b E b C E
23 22 rexbidva G USGraph A V C V b V T = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C b V T = ⟨“ AbC ”⟩ A C A b E b C E
24 8 23 bitrd G USGraph A V C V T A 2 WSPathsNOn G C b V T = ⟨“ AbC ”⟩ A C A b E b C E