Metamath Proof Explorer


Theorem usgrausgrb

Description: The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 2-Jan-2020) (Revised by AV, 15-Oct-2020)

Ref Expression
Hypotheses ausgr.1 G = v e | e x 𝒫 v | x = 2
ausgrusgri.1 O = f | f : dom f 1-1 ran f
Assertion usgrausgrb H W iEdg H O Vtx H G Edg H H USGraph

Proof

Step Hyp Ref Expression
1 ausgr.1 G = v e | e x 𝒫 v | x = 2
2 ausgrusgri.1 O = f | f : dom f 1-1 ran f
3 1 2 ausgrusgri H W Vtx H G Edg H iEdg H O H USGraph
4 3 3exp H W Vtx H G Edg H iEdg H O H USGraph
5 4 com23 H W iEdg H O Vtx H G Edg H H USGraph
6 5 imp H W iEdg H O Vtx H G Edg H H USGraph
7 1 usgrausgri H USGraph Vtx H G Edg H
8 6 7 impbid1 H W iEdg H O Vtx H G Edg H H USGraph