Metamath Proof Explorer


Theorem usgrausgri

Description: A simple graph represented by an alternatively defined simple graph. (Contributed by AV, 15-Oct-2020)

Ref Expression
Hypothesis ausgr.1 G = v e | e x 𝒫 v | x = 2
Assertion usgrausgri H USGraph Vtx H G Edg H

Proof

Step Hyp Ref Expression
1 ausgr.1 G = v e | e x 𝒫 v | x = 2
2 usgredgss H USGraph Edg H x 𝒫 Vtx H | x = 2
3 fvex Vtx H V
4 fvex Edg H V
5 1 isausgr Vtx H V Edg H V Vtx H G Edg H Edg H x 𝒫 Vtx H | x = 2
6 3 4 5 mp2an Vtx H G Edg H Edg H x 𝒫 Vtx H | x = 2
7 2 6 sylibr H USGraph Vtx H G Edg H