Metamath Proof Explorer


Theorem usgredg2ALT

Description: Alternate proof of usgredg2 , not using umgredg2 . (Contributed by Alexander van der Vekens, 11-Aug-2017) (Revised by AV, 16-Oct-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis usgredg2.e E = iEdg G
Assertion usgredg2ALT G USGraph X dom E E X = 2

Proof

Step Hyp Ref Expression
1 usgredg2.e E = iEdg G
2 eqid Vtx G = Vtx G
3 2 1 usgrf G USGraph E : dom E 1-1 x 𝒫 Vtx G | x = 2
4 f1f E : dom E 1-1 x 𝒫 Vtx G | x = 2 E : dom E x 𝒫 Vtx G | x = 2
5 3 4 syl G USGraph E : dom E x 𝒫 Vtx G | x = 2
6 5 ffvelrnda G USGraph X dom E E X x 𝒫 Vtx G | x = 2
7 fveq2 x = E X x = E X
8 7 eqeq1d x = E X x = 2 E X = 2
9 8 elrab E X x 𝒫 Vtx G | x = 2 E X 𝒫 Vtx G E X = 2
10 9 simprbi E X x 𝒫 Vtx G | x = 2 E X = 2
11 6 10 syl G USGraph X dom E E X = 2