Metamath Proof Explorer


Theorem usgredg2v

Description: In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)

Ref Expression
Hypotheses usgredg2v.v V = Vtx G
usgredg2v.e E = iEdg G
usgredg2v.a A = x dom E | N E x
usgredg2v.f F = y A ι z V | E y = z N
Assertion usgredg2v G USGraph N V F : A 1-1 V

Proof

Step Hyp Ref Expression
1 usgredg2v.v V = Vtx G
2 usgredg2v.e E = iEdg G
3 usgredg2v.a A = x dom E | N E x
4 usgredg2v.f F = y A ι z V | E y = z N
5 1 2 3 usgredg2vlem1 G USGraph y A ι z V | E y = z N V
6 5 ralrimiva G USGraph y A ι z V | E y = z N V
7 6 adantr G USGraph N V y A ι z V | E y = z N V
8 2 usgrf1 G USGraph E : dom E 1-1 ran E
9 8 adantr G USGraph N V E : dom E 1-1 ran E
10 elrabi y x dom E | N E x y dom E
11 10 3 eleq2s y A y dom E
12 elrabi w x dom E | N E x w dom E
13 12 3 eleq2s w A w dom E
14 11 13 anim12i y A w A y dom E w dom E
15 f1fveq E : dom E 1-1 ran E y dom E w dom E E y = E w y = w
16 9 14 15 syl2an G USGraph N V y A w A E y = E w y = w
17 16 bicomd G USGraph N V y A w A y = w E y = E w
18 17 notbid G USGraph N V y A w A ¬ y = w ¬ E y = E w
19 simpl G USGraph N V G USGraph
20 simpl y A w A y A
21 19 20 anim12i G USGraph N V y A w A G USGraph y A
22 preq1 u = z u N = z N
23 22 eqeq2d u = z E y = u N E y = z N
24 23 cbvriotavw ι u V | E y = u N = ι z V | E y = z N
25 1 2 3 usgredg2vlem2 G USGraph y A ι u V | E y = u N = ι z V | E y = z N E y = ι u V | E y = u N N
26 21 24 25 mpisyl G USGraph N V y A w A E y = ι u V | E y = u N N
27 an3 G USGraph N V y A w A G USGraph w A
28 22 eqeq2d u = z E w = u N E w = z N
29 28 cbvriotavw ι u V | E w = u N = ι z V | E w = z N
30 1 2 3 usgredg2vlem2 G USGraph w A ι u V | E w = u N = ι z V | E w = z N E w = ι u V | E w = u N N
31 27 29 30 mpisyl G USGraph N V y A w A E w = ι u V | E w = u N N
32 26 31 eqeq12d G USGraph N V y A w A E y = E w ι u V | E y = u N N = ι u V | E w = u N N
33 32 notbid G USGraph N V y A w A ¬ E y = E w ¬ ι u V | E y = u N N = ι u V | E w = u N N
34 riotaex ι u V | E y = u N V
35 34 a1i N V ι u V | E y = u N V
36 id N V N V
37 riotaex ι u V | E w = u N V
38 37 a1i N V ι u V | E w = u N V
39 preq12bg ι u V | E y = u N V N V ι u V | E w = u N V N V ι u V | E y = u N N = ι u V | E w = u N N ι u V | E y = u N = ι u V | E w = u N N = N ι u V | E y = u N = N N = ι u V | E w = u N
40 35 36 38 36 39 syl22anc N V ι u V | E y = u N N = ι u V | E w = u N N ι u V | E y = u N = ι u V | E w = u N N = N ι u V | E y = u N = N N = ι u V | E w = u N
41 40 notbid N V ¬ ι u V | E y = u N N = ι u V | E w = u N N ¬ ι u V | E y = u N = ι u V | E w = u N N = N ι u V | E y = u N = N N = ι u V | E w = u N
42 41 adantl G USGraph N V ¬ ι u V | E y = u N N = ι u V | E w = u N N ¬ ι u V | E y = u N = ι u V | E w = u N N = N ι u V | E y = u N = N N = ι u V | E w = u N
43 ioran ¬ ι u V | E y = u N = ι u V | E w = u N N = N ι u V | E y = u N = N N = ι u V | E w = u N ¬ ι u V | E y = u N = ι u V | E w = u N N = N ¬ ι u V | E y = u N = N N = ι u V | E w = u N
44 ianor ¬ ι u V | E y = u N = ι u V | E w = u N N = N ¬ ι u V | E y = u N = ι u V | E w = u N ¬ N = N
45 24 29 eqeq12i ι u V | E y = u N = ι u V | E w = u N ι z V | E y = z N = ι z V | E w = z N
46 45 notbii ¬ ι u V | E y = u N = ι u V | E w = u N ¬ ι z V | E y = z N = ι z V | E w = z N
47 46 biimpi ¬ ι u V | E y = u N = ι u V | E w = u N ¬ ι z V | E y = z N = ι z V | E w = z N
48 47 a1d ¬ ι u V | E y = u N = ι u V | E w = u N G USGraph ¬ ι z V | E y = z N = ι z V | E w = z N
49 eqid N = N
50 49 pm2.24i ¬ N = N G USGraph ¬ ι z V | E y = z N = ι z V | E w = z N
51 48 50 jaoi ¬ ι u V | E y = u N = ι u V | E w = u N ¬ N = N G USGraph ¬ ι z V | E y = z N = ι z V | E w = z N
52 44 51 sylbi ¬ ι u V | E y = u N = ι u V | E w = u N N = N G USGraph ¬ ι z V | E y = z N = ι z V | E w = z N
53 52 adantr ¬ ι u V | E y = u N = ι u V | E w = u N N = N ¬ ι u V | E y = u N = N N = ι u V | E w = u N G USGraph ¬ ι z V | E y = z N = ι z V | E w = z N
54 43 53 sylbi ¬ ι u V | E y = u N = ι u V | E w = u N N = N ι u V | E y = u N = N N = ι u V | E w = u N G USGraph ¬ ι z V | E y = z N = ι z V | E w = z N
55 54 com12 G USGraph ¬ ι u V | E y = u N = ι u V | E w = u N N = N ι u V | E y = u N = N N = ι u V | E w = u N ¬ ι z V | E y = z N = ι z V | E w = z N
56 55 adantr G USGraph N V ¬ ι u V | E y = u N = ι u V | E w = u N N = N ι u V | E y = u N = N N = ι u V | E w = u N ¬ ι z V | E y = z N = ι z V | E w = z N
57 42 56 sylbid G USGraph N V ¬ ι u V | E y = u N N = ι u V | E w = u N N ¬ ι z V | E y = z N = ι z V | E w = z N
58 57 adantr G USGraph N V y A w A ¬ ι u V | E y = u N N = ι u V | E w = u N N ¬ ι z V | E y = z N = ι z V | E w = z N
59 33 58 sylbid G USGraph N V y A w A ¬ E y = E w ¬ ι z V | E y = z N = ι z V | E w = z N
60 18 59 sylbid G USGraph N V y A w A ¬ y = w ¬ ι z V | E y = z N = ι z V | E w = z N
61 60 con4d G USGraph N V y A w A ι z V | E y = z N = ι z V | E w = z N y = w
62 61 ralrimivva G USGraph N V y A w A ι z V | E y = z N = ι z V | E w = z N y = w
63 fveqeq2 y = w E y = z N E w = z N
64 63 riotabidv y = w ι z V | E y = z N = ι z V | E w = z N
65 4 64 f1mpt F : A 1-1 V y A ι z V | E y = z N V y A w A ι z V | E y = z N = ι z V | E w = z N y = w
66 7 62 65 sylanbrc G USGraph N V F : A 1-1 V