Metamath Proof Explorer


Theorem usgredg2vlem1

Description: Lemma 1 for usgredg2v . (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)

Ref Expression
Hypotheses usgredg2v.v V = Vtx G
usgredg2v.e E = iEdg G
usgredg2v.a A = x dom E | N E x
Assertion usgredg2vlem1 G USGraph Y A ι z V | E Y = z N V

Proof

Step Hyp Ref Expression
1 usgredg2v.v V = Vtx G
2 usgredg2v.e E = iEdg G
3 usgredg2v.a A = x dom E | N E x
4 fveq2 x = Y E x = E Y
5 4 eleq2d x = Y N E x N E Y
6 5 3 elrab2 Y A Y dom E N E Y
7 1 2 usgredgreu G USGraph Y dom E N E Y ∃! z V E Y = N z
8 prcom N z = z N
9 8 eqeq2i E Y = N z E Y = z N
10 9 reubii ∃! z V E Y = N z ∃! z V E Y = z N
11 7 10 sylib G USGraph Y dom E N E Y ∃! z V E Y = z N
12 11 3expb G USGraph Y dom E N E Y ∃! z V E Y = z N
13 riotacl ∃! z V E Y = z N ι z V | E Y = z N V
14 12 13 syl G USGraph Y dom E N E Y ι z V | E Y = z N V
15 6 14 sylan2b G USGraph Y A ι z V | E Y = z N V