Metamath Proof Explorer


Theorem usgredg3

Description: The value of the "edge function" of a simple graph is a set containing two elements (the endvertices of the corresponding edge). (Contributed by Alexander van der Vekens, 18-Dec-2017) (Revised by AV, 17-Oct-2020)

Ref Expression
Hypotheses usgredg3.v V = Vtx G
usgredg3.e E = iEdg G
Assertion usgredg3 G USGraph X dom E x V y V x y E X = x y

Proof

Step Hyp Ref Expression
1 usgredg3.v V = Vtx G
2 usgredg3.e E = iEdg G
3 usgrfun G USGraph Fun iEdg G
4 2 funeqi Fun E Fun iEdg G
5 3 4 sylibr G USGraph Fun E
6 fvelrn Fun E X dom E E X ran E
7 5 6 sylan G USGraph X dom E E X ran E
8 edgval Edg G = ran iEdg G
9 8 a1i G USGraph Edg G = ran iEdg G
10 2 eqcomi iEdg G = E
11 10 rneqi ran iEdg G = ran E
12 9 11 eqtrdi G USGraph Edg G = ran E
13 12 adantr G USGraph X dom E Edg G = ran E
14 7 13 eleqtrrd G USGraph X dom E E X Edg G
15 eqid Edg G = Edg G
16 1 15 usgredg G USGraph E X Edg G x V y V x y E X = x y
17 14 16 syldan G USGraph X dom E x V y V x y E X = x y