Metamath Proof Explorer


Theorem usgredg4

Description: For a vertex incident to an edge there is another vertex incident to the edge. (Contributed by Alexander van der Vekens, 18-Dec-2017) (Revised by AV, 17-Oct-2020)

Ref Expression
Hypotheses usgredg3.v V = Vtx G
usgredg3.e E = iEdg G
Assertion usgredg4 G USGraph X dom E Y E X y V E X = Y y

Proof

Step Hyp Ref Expression
1 usgredg3.v V = Vtx G
2 usgredg3.e E = iEdg G
3 1 2 usgredg3 G USGraph X dom E x V z V x z E X = x z
4 eleq2 E X = x z Y E X Y x z
5 4 adantl x z E X = x z Y E X Y x z
6 5 adantl G USGraph X dom E x V z V x z E X = x z Y E X Y x z
7 simplrr G USGraph X dom E x V z V x z E X = x z z V
8 7 adantl Y = x G USGraph X dom E x V z V x z E X = x z z V
9 preq2 y = z x y = x z
10 9 eqeq2d y = z x z = x y x z = x z
11 10 adantl Y = x G USGraph X dom E x V z V x z E X = x z y = z x z = x y x z = x z
12 eqidd Y = x G USGraph X dom E x V z V x z E X = x z x z = x z
13 8 11 12 rspcedvd Y = x G USGraph X dom E x V z V x z E X = x z y V x z = x y
14 simprr G USGraph X dom E x V z V x z E X = x z E X = x z
15 preq1 Y = x Y y = x y
16 14 15 eqeqan12rd Y = x G USGraph X dom E x V z V x z E X = x z E X = Y y x z = x y
17 16 rexbidv Y = x G USGraph X dom E x V z V x z E X = x z y V E X = Y y y V x z = x y
18 13 17 mpbird Y = x G USGraph X dom E x V z V x z E X = x z y V E X = Y y
19 18 ex Y = x G USGraph X dom E x V z V x z E X = x z y V E X = Y y
20 simplrl G USGraph X dom E x V z V x z E X = x z x V
21 20 adantl Y = z G USGraph X dom E x V z V x z E X = x z x V
22 preq2 y = x z y = z x
23 22 eqeq2d y = x x z = z y x z = z x
24 23 adantl Y = z G USGraph X dom E x V z V x z E X = x z y = x x z = z y x z = z x
25 prcom x z = z x
26 25 a1i Y = z G USGraph X dom E x V z V x z E X = x z x z = z x
27 21 24 26 rspcedvd Y = z G USGraph X dom E x V z V x z E X = x z y V x z = z y
28 preq1 Y = z Y y = z y
29 14 28 eqeqan12rd Y = z G USGraph X dom E x V z V x z E X = x z E X = Y y x z = z y
30 29 rexbidv Y = z G USGraph X dom E x V z V x z E X = x z y V E X = Y y y V x z = z y
31 27 30 mpbird Y = z G USGraph X dom E x V z V x z E X = x z y V E X = Y y
32 31 ex Y = z G USGraph X dom E x V z V x z E X = x z y V E X = Y y
33 19 32 jaoi Y = x Y = z G USGraph X dom E x V z V x z E X = x z y V E X = Y y
34 elpri Y x z Y = x Y = z
35 33 34 syl11 G USGraph X dom E x V z V x z E X = x z Y x z y V E X = Y y
36 6 35 sylbid G USGraph X dom E x V z V x z E X = x z Y E X y V E X = Y y
37 36 ex G USGraph X dom E x V z V x z E X = x z Y E X y V E X = Y y
38 37 rexlimdvva G USGraph X dom E x V z V x z E X = x z Y E X y V E X = Y y
39 3 38 mpd G USGraph X dom E Y E X y V E X = Y y
40 39 3impia G USGraph X dom E Y E X y V E X = Y y