Metamath Proof Explorer


Theorem usgredgffibi

Description: The number of edges in a simple graph is finite iff its edge function is finite. (Contributed by AV, 10-Jan-2020) (Revised by AV, 22-Oct-2020)

Ref Expression
Hypotheses usgredgffibi.I I = iEdg G
usgredgffibi.e E = Edg G
Assertion usgredgffibi G USGraph E Fin I Fin

Proof

Step Hyp Ref Expression
1 usgredgffibi.I I = iEdg G
2 usgredgffibi.e E = Edg G
3 edgval Edg G = ran iEdg G
4 1 eqcomi iEdg G = I
5 4 rneqi ran iEdg G = ran I
6 2 3 5 3eqtri E = ran I
7 6 eleq1i E Fin ran I Fin
8 1 fvexi I V
9 eqid Vtx G = Vtx G
10 9 1 usgrfs G USGraph I : dom I 1-1 x 𝒫 Vtx G | x = 2
11 f1vrnfibi I V I : dom I 1-1 x 𝒫 Vtx G | x = 2 I Fin ran I Fin
12 8 10 11 sylancr G USGraph I Fin ran I Fin
13 7 12 bitr4id G USGraph E Fin I Fin