Metamath Proof Explorer


Theorem usgredgleord

Description: In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020) (Proof shortened by AV, 6-Dec-2020)

Ref Expression
Hypotheses usgredgleord.v V = Vtx G
usgredgleord.e E = Edg G
Assertion usgredgleord G USGraph N V e E | N e V

Proof

Step Hyp Ref Expression
1 usgredgleord.v V = Vtx G
2 usgredgleord.e E = Edg G
3 usgruspgr G USGraph G USHGraph
4 1 2 uspgredgleord G USHGraph N V e E | N e V
5 3 4 sylan G USGraph N V e E | N e V