Metamath Proof Explorer


Theorem usgredgne

Description: An edge of a simple graph always connects two different vertices. Analogue of usgrnloopv resp. usgrnloop . (Contributed by Alexander van der Vekens, 2-Sep-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 27-Nov-2020)

Ref Expression
Hypothesis usgredgne.v E = Edg G
Assertion usgredgne G USGraph M N E M N

Proof

Step Hyp Ref Expression
1 usgredgne.v E = Edg G
2 usgrumgr G USGraph G UMGraph
3 1 umgredgne G UMGraph M N E M N
4 2 3 sylan G USGraph M N E M N