Metamath Proof Explorer


Theorem usgredgop

Description: An edge of a simple graph as second component of an ordered pair. (Contributed by Alexander van der Vekens, 17-Aug-2017) (Proof shortened by Alexander van der Vekens, 16-Dec-2017) (Revised by AV, 15-Oct-2020)

Ref Expression
Assertion usgredgop G USGraph E = iEdg G X dom E E X = M N X M N E

Proof

Step Hyp Ref Expression
1 usgrfun G USGraph Fun iEdg G
2 funeq E = iEdg G Fun E Fun iEdg G
3 1 2 syl5ibrcom G USGraph E = iEdg G Fun E
4 3 imp G USGraph E = iEdg G Fun E
5 funopfvb Fun E X dom E E X = M N X M N E
6 4 5 stoic3 G USGraph E = iEdg G X dom E E X = M N X M N E