Metamath Proof Explorer


Theorem usgredgppr

Description: An edge of a simple graph is a proper pair, i.e. a set containing two different elements (the endvertices of the edge). Analogue of usgredg2 . (Contributed by Alexander van der Vekens, 11-Aug-2017) (Revised by AV, 9-Jan-2020) (Revised by AV, 23-Oct-2020)

Ref Expression
Hypothesis usgredgppr.e E = Edg G
Assertion usgredgppr G USGraph C E C = 2

Proof

Step Hyp Ref Expression
1 usgredgppr.e E = Edg G
2 1 eleq2i C E C Edg G
3 edgusgr G USGraph C Edg G C 𝒫 Vtx G C = 2
4 2 3 sylan2b G USGraph C E C 𝒫 Vtx G C = 2
5 4 simprd G USGraph C E C = 2