Database
GRAPH THEORY
Undirected graphs
Undirected simple graphs
usgredgprv
Metamath Proof Explorer
Description: In a simple graph, an edge is an unordered pair of vertices.
(Contributed by Alexander van der Vekens , 19-Aug-2017) (Revised by AV , 16-Oct-2020) (Proof shortened by AV , 11-Dec-2020)
Ref
Expression
Hypotheses
usgredg2.e
⊢ E = iEdg ⁡ G
usgredgprv.v
⊢ V = Vtx ⁡ G
Assertion
usgredgprv
⊢ G ∈ USGraph ∧ X ∈ dom ⁡ E → E ⁡ X = M N → M ∈ V ∧ N ∈ V
Proof
Step
Hyp
Ref
Expression
1
usgredg2.e
⊢ E = iEdg ⁡ G
2
usgredgprv.v
⊢ V = Vtx ⁡ G
3
usgrumgr
⊢ G ∈ USGraph → G ∈ UMGraph
4
1 2
umgredgprv
⊢ G ∈ UMGraph ∧ X ∈ dom ⁡ E → E ⁡ X = M N → M ∈ V ∧ N ∈ V
5
3 4
sylan
⊢ G ∈ USGraph ∧ X ∈ dom ⁡ E → E ⁡ X = M N → M ∈ V ∧ N ∈ V