Metamath Proof Explorer


Theorem usgredgprvALT

Description: Alternate proof of usgredgprv , using usgredg2 instead of umgredgprv . (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 16-Oct-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses usgredg2.e E = iEdg G
usgredgprv.v V = Vtx G
Assertion usgredgprvALT G USGraph X dom E E X = M N M V N V

Proof

Step Hyp Ref Expression
1 usgredg2.e E = iEdg G
2 usgredgprv.v V = Vtx G
3 1 2 usgrss G USGraph X dom E E X V
4 1 usgredg2 G USGraph X dom E E X = 2
5 sseq1 E X = M N E X V M N V
6 fveq2 E X = M N E X = M N
7 6 eqeq1d E X = M N E X = 2 M N = 2
8 5 7 anbi12d E X = M N E X V E X = 2 M N V M N = 2
9 eqid M N = M N
10 9 hashprdifel M N = 2 M M N N M N M N
11 prssg M M N N M N M V N V M N V
12 11 3adant3 M M N N M N M N M V N V M N V
13 12 biimprd M M N N M N M N M N V M V N V
14 10 13 syl M N = 2 M N V M V N V
15 14 impcom M N V M N = 2 M V N V
16 8 15 syl6bi E X = M N E X V E X = 2 M V N V
17 16 com12 E X V E X = 2 E X = M N M V N V
18 3 4 17 syl2anc G USGraph X dom E E X = M N M V N V