Metamath Proof Explorer


Theorem usgrexmpldifpr

Description: Lemma for usgrexmpledg : all "edges" are different. (Contributed by Alexander van der Vekens, 15-Aug-2017)

Ref Expression
Assertion usgrexmpldifpr 0 1 1 2 0 1 2 0 0 1 0 3 1 2 2 0 1 2 0 3 2 0 0 3

Proof

Step Hyp Ref Expression
1 0z 0
2 1z 1
3 1 2 pm3.2i 0 1
4 2z 2
5 2 4 pm3.2i 1 2
6 3 5 pm3.2i 0 1 1 2
7 ax-1ne0 1 0
8 7 necomi 0 1
9 2ne0 2 0
10 9 necomi 0 2
11 8 10 pm3.2i 0 1 0 2
12 11 orci 0 1 0 2 1 1 1 2
13 prneimg 0 1 1 2 0 1 0 2 1 1 1 2 0 1 1 2
14 6 12 13 mp2 0 1 1 2
15 4 1 pm3.2i 2 0
16 3 15 pm3.2i 0 1 2 0
17 1ne2 1 2
18 17 7 pm3.2i 1 2 1 0
19 18 olci 0 2 0 0 1 2 1 0
20 prneimg 0 1 2 0 0 2 0 0 1 2 1 0 0 1 2 0
21 16 19 20 mp2 0 1 2 0
22 3nn 3
23 1 22 pm3.2i 0 3
24 3 23 pm3.2i 0 1 0 3
25 1re 1
26 1lt3 1 < 3
27 25 26 ltneii 1 3
28 7 27 pm3.2i 1 0 1 3
29 28 olci 0 0 0 3 1 0 1 3
30 prneimg 0 1 0 3 0 0 0 3 1 0 1 3 0 1 0 3
31 24 29 30 mp2 0 1 0 3
32 14 21 31 3pm3.2i 0 1 1 2 0 1 2 0 0 1 0 3
33 5 15 pm3.2i 1 2 2 0
34 18 orci 1 2 1 0 2 2 2 0
35 prneimg 1 2 2 0 1 2 1 0 2 2 2 0 1 2 2 0
36 33 34 35 mp2 1 2 2 0
37 5 23 pm3.2i 1 2 0 3
38 28 orci 1 0 1 3 2 0 2 3
39 prneimg 1 2 0 3 1 0 1 3 2 0 2 3 1 2 0 3
40 37 38 39 mp2 1 2 0 3
41 15 23 pm3.2i 2 0 0 3
42 2re 2
43 2lt3 2 < 3
44 42 43 ltneii 2 3
45 9 44 pm3.2i 2 0 2 3
46 45 orci 2 0 2 3 0 0 0 3
47 prneimg 2 0 0 3 2 0 2 3 0 0 0 3 2 0 0 3
48 41 46 47 mp2 2 0 0 3
49 36 40 48 3pm3.2i 1 2 2 0 1 2 0 3 2 0 0 3
50 32 49 pm3.2i 0 1 1 2 0 1 2 0 0 1 0 3 1 2 2 0 1 2 0 3 2 0 0 3