Metamath Proof Explorer


Theorem usgrexmpllem

Description: Lemma for usgrexmpl . (Contributed by AV, 21-Oct-2020)

Ref Expression
Hypotheses usgrexmpl.v V = 0 4
usgrexmpl.e E = ⟨“ 0 1 1 2 2 0 0 3 ”⟩
usgrexmpl.g G = V E
Assertion usgrexmpllem Vtx G = V iEdg G = E

Proof

Step Hyp Ref Expression
1 usgrexmpl.v V = 0 4
2 usgrexmpl.e E = ⟨“ 0 1 1 2 2 0 0 3 ”⟩
3 usgrexmpl.g G = V E
4 1 ovexi V V
5 s4cli ⟨“ 0 1 1 2 2 0 0 3 ”⟩ Word V
6 5 elexi ⟨“ 0 1 1 2 2 0 0 3 ”⟩ V
7 2 6 eqeltri E V
8 opvtxfv V V E V Vtx V E = V
9 opiedgfv V V E V iEdg V E = E
10 8 9 jca V V E V Vtx V E = V iEdg V E = E
11 4 7 10 mp2an Vtx V E = V iEdg V E = E
12 3 fveq2i Vtx G = Vtx V E
13 12 eqeq1i Vtx G = V Vtx V E = V
14 3 fveq2i iEdg G = iEdg V E
15 14 eqeq1i iEdg G = E iEdg V E = E
16 13 15 anbi12i Vtx G = V iEdg G = E Vtx V E = V iEdg V E = E
17 11 16 mpbir Vtx G = V iEdg G = E