Database
GRAPH THEORY
Undirected graphs
Examples for graphs
usgrexmpllem
Next ⟩
usgrexmplvtx
Metamath Proof Explorer
Ascii
Unicode
Theorem
usgrexmpllem
Description:
Lemma for
usgrexmpl
.
(Contributed by
AV
, 21-Oct-2020)
Ref
Expression
Hypotheses
usgrexmpl.v
⊢
V
=
0
…
4
usgrexmpl.e
⊢
E
=
〈“
0
1
1
2
2
0
0
3
”〉
usgrexmpl.g
⊢
G
=
V
E
Assertion
usgrexmpllem
⊢
Vtx
⁡
G
=
V
∧
iEdg
⁡
G
=
E
Proof
Step
Hyp
Ref
Expression
1
usgrexmpl.v
⊢
V
=
0
…
4
2
usgrexmpl.e
⊢
E
=
〈“
0
1
1
2
2
0
0
3
”〉
3
usgrexmpl.g
⊢
G
=
V
E
4
1
ovexi
⊢
V
∈
V
5
s4cli
⊢
〈“
0
1
1
2
2
0
0
3
”〉
∈
Word
V
6
5
elexi
⊢
〈“
0
1
1
2
2
0
0
3
”〉
∈
V
7
2
6
eqeltri
⊢
E
∈
V
8
opvtxfv
⊢
V
∈
V
∧
E
∈
V
→
Vtx
⁡
V
E
=
V
9
opiedgfv
⊢
V
∈
V
∧
E
∈
V
→
iEdg
⁡
V
E
=
E
10
8
9
jca
⊢
V
∈
V
∧
E
∈
V
→
Vtx
⁡
V
E
=
V
∧
iEdg
⁡
V
E
=
E
11
4
7
10
mp2an
⊢
Vtx
⁡
V
E
=
V
∧
iEdg
⁡
V
E
=
E
12
3
fveq2i
⊢
Vtx
⁡
G
=
Vtx
⁡
V
E
13
12
eqeq1i
⊢
Vtx
⁡
G
=
V
↔
Vtx
⁡
V
E
=
V
14
3
fveq2i
⊢
iEdg
⁡
G
=
iEdg
⁡
V
E
15
14
eqeq1i
⊢
iEdg
⁡
G
=
E
↔
iEdg
⁡
V
E
=
E
16
13
15
anbi12i
⊢
Vtx
⁡
G
=
V
∧
iEdg
⁡
G
=
E
↔
Vtx
⁡
V
E
=
V
∧
iEdg
⁡
V
E
=
E
17
11
16
mpbir
⊢
Vtx
⁡
G
=
V
∧
iEdg
⁡
G
=
E