Database
GRAPH THEORY
Undirected graphs
Undirected simple graphs
usgrf
Metamath Proof Explorer
Description: The edge function of a simple graph is a one-to-one function into the
set of proper unordered pairs of vertices. (Contributed by Alexander
van der Vekens , 10-Aug-2017) (Revised by AV , 13-Oct-2020)
Ref
Expression
Hypotheses
isuspgr.v
⊢ V = Vtx ⁡ G
isuspgr.e
⊢ E = iEdg ⁡ G
Assertion
usgrf
⊢ G ∈ USGraph → E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 V ∖ ∅ | x = 2
Proof
Step
Hyp
Ref
Expression
1
isuspgr.v
⊢ V = Vtx ⁡ G
2
isuspgr.e
⊢ E = iEdg ⁡ G
3
1 2
isusgr
⊢ G ∈ USGraph → G ∈ USGraph ↔ E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 V ∖ ∅ | x = 2
4
3
ibi
⊢ G ∈ USGraph → E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 V ∖ ∅ | x = 2