Metamath Proof Explorer


Theorem usgrfilem

Description: In a finite simple graph, the number of edges is finite iff the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 9-Nov-2020)

Ref Expression
Hypotheses fusgredgfi.v V = Vtx G
fusgredgfi.e E = Edg G
usgrfilem.f F = e E | N e
Assertion usgrfilem G FinUSGraph N V E Fin F Fin

Proof

Step Hyp Ref Expression
1 fusgredgfi.v V = Vtx G
2 fusgredgfi.e E = Edg G
3 usgrfilem.f F = e E | N e
4 rabfi E Fin e E | N e Fin
5 3 4 eqeltrid E Fin F Fin
6 uncom F e E | N e = e E | N e F
7 eqid e E | N e = e E | N e
8 7 3 elnelun e E | N e F = E
9 6 8 eqtr2i E = F e E | N e
10 1 2 fusgredgfi G FinUSGraph N V e E | N e Fin
11 10 anim1ci G FinUSGraph N V F Fin F Fin e E | N e Fin
12 unfi F Fin e E | N e Fin F e E | N e Fin
13 11 12 syl G FinUSGraph N V F Fin F e E | N e Fin
14 9 13 eqeltrid G FinUSGraph N V F Fin E Fin
15 14 ex G FinUSGraph N V F Fin E Fin
16 5 15 impbid2 G FinUSGraph N V E Fin F Fin