Metamath Proof Explorer


Theorem usgriedgleord

Description: Alternate version of usgredgleord , not using the notation ( EdgG ) . In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)

Ref Expression
Hypotheses usgredg2v.v V = Vtx G
usgredg2v.e E = iEdg G
Assertion usgriedgleord G USGraph N V x dom E | N E x V

Proof

Step Hyp Ref Expression
1 usgredg2v.v V = Vtx G
2 usgredg2v.e E = iEdg G
3 1 fvexi V V
4 eqid x dom E | N E x = x dom E | N E x
5 eqid y x dom E | N E x ι z V | E y = z N = y x dom E | N E x ι z V | E y = z N
6 1 2 4 5 usgredg2v G USGraph N V y x dom E | N E x ι z V | E y = z N : x dom E | N E x 1-1 V
7 f1domg V V y x dom E | N E x ι z V | E y = z N : x dom E | N E x 1-1 V x dom E | N E x V
8 3 6 7 mpsyl G USGraph N V x dom E | N E x V
9 hashdomi x dom E | N E x V x dom E | N E x V
10 8 9 syl G USGraph N V x dom E | N E x V