Database
GRAPH THEORY
Undirected graphs
Undirected simple graphs
usgrnloop0
Metamath Proof Explorer
Description: A simple graph has no loops. (Contributed by Alexander van der Vekens , 6-Dec-2017) (Revised by AV , 17-Oct-2020) (Proof shortened by AV , 11-Dec-2020)
Ref
Expression
Hypothesis
usgrnloopv.e
⊢ E = iEdg ⁡ G
Assertion
usgrnloop0
⊢ G ∈ USGraph → x ∈ dom ⁡ E | E ⁡ x = U = ∅
Proof
Step
Hyp
Ref
Expression
1
usgrnloopv.e
⊢ E = iEdg ⁡ G
2
usgrumgr
⊢ G ∈ USGraph → G ∈ UMGraph
3
1
umgrnloop0
⊢ G ∈ UMGraph → x ∈ dom ⁡ E | E ⁡ x = U = ∅
4
2 3
syl
⊢ G ∈ USGraph → x ∈ dom ⁡ E | E ⁡ x = U = ∅