Metamath Proof Explorer


Theorem usgrnloopALT

Description: Alternate proof of usgrnloop , not using umgrnloop . (Contributed by Alexander van der Vekens, 19-Aug-2017) (Proof shortened by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 17-Oct-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis usgrnloopv.e E=iEdgG
Assertion usgrnloopALT GUSGraphxdomEEx=MNMN

Proof

Step Hyp Ref Expression
1 usgrnloopv.e E=iEdgG
2 eqid VtxG=VtxG
3 1 2 usgredgprv GUSGraphxdomEEx=MNMVtxGNVtxG
4 3 imp GUSGraphxdomEEx=MNMVtxGNVtxG
5 1 usgrnloopv GUSGraphMVtxGEx=MNMN
6 5 ex GUSGraphMVtxGEx=MNMN
7 6 com23 GUSGraphEx=MNMVtxGMN
8 7 adantr GUSGraphxdomEEx=MNMVtxGMN
9 8 imp GUSGraphxdomEEx=MNMVtxGMN
10 9 com12 MVtxGGUSGraphxdomEEx=MNMN
11 10 adantr MVtxGNVtxGGUSGraphxdomEEx=MNMN
12 4 11 mpcom GUSGraphxdomEEx=MNMN
13 12 ex GUSGraphxdomEEx=MNMN
14 13 rexlimdva GUSGraphxdomEEx=MNMN