Metamath Proof Explorer


Theorem usgrnloopvALT

Description: Alternate proof of usgrnloopv , not using umgrnloopv . (Contributed by Alexander van der Vekens, 26-Jan-2018) (Revised by AV, 17-Oct-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis usgrnloopv.e E = iEdg G
Assertion usgrnloopvALT G USGraph M W E X = M N M N

Proof

Step Hyp Ref Expression
1 usgrnloopv.e E = iEdg G
2 prnzg M W M N
3 2 adantl E X = M N M W M N
4 neeq1 E X = M N E X M N
5 4 adantr E X = M N M W E X M N
6 3 5 mpbird E X = M N M W E X
7 fvfundmfvn0 E X X dom E Fun E X
8 6 7 syl E X = M N M W X dom E Fun E X
9 1 usgredg2 G USGraph X dom E E X = 2
10 fveq2 E X = M N E X = M N
11 10 eqeq1d E X = M N E X = 2 M N = 2
12 eqid M N = M N
13 12 hashprdifel M N = 2 M M N N M N M N
14 13 simp3d M N = 2 M N
15 11 14 syl6bi E X = M N E X = 2 M N
16 15 adantr E X = M N M W E X = 2 M N
17 9 16 syl5com G USGraph X dom E E X = M N M W M N
18 17 expcom X dom E G USGraph E X = M N M W M N
19 18 com23 X dom E E X = M N M W G USGraph M N
20 19 adantr X dom E Fun E X E X = M N M W G USGraph M N
21 8 20 mpcom E X = M N M W G USGraph M N
22 21 ex E X = M N M W G USGraph M N
23 22 com13 G USGraph M W E X = M N M N
24 23 imp G USGraph M W E X = M N M N