Metamath Proof Explorer


Theorem usgrprc

Description: The class of simple graphs is a proper class (and therefore, because of prcssprc , the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020)

Ref Expression
Assertion usgrprc USGraph V

Proof

Step Hyp Ref Expression
1 eqid v e | e : = v e | e :
2 1 griedg0ssusgr v e | e : USGraph
3 1 griedg0prc v e | e : V
4 prcssprc v e | e : USGraph v e | e : V USGraph V
5 2 3 4 mp2an USGraph V