Metamath Proof Explorer


Theorem usgrres

Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a simple graph (see uhgrspan1 ) is a simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018) (Revised by AV, 19-Dec-2021)

Ref Expression
Hypotheses upgrres.v V = Vtx G
upgrres.e E = iEdg G
upgrres.f F = i dom E | N E i
upgrres.s S = V N E F
Assertion usgrres G USGraph N V S USGraph

Proof

Step Hyp Ref Expression
1 upgrres.v V = Vtx G
2 upgrres.e E = iEdg G
3 upgrres.f F = i dom E | N E i
4 upgrres.s S = V N E F
5 1 2 usgrf G USGraph E : dom E 1-1 x 𝒫 V | x = 2
6 3 ssrab3 F dom E
7 6 a1i G USGraph N V F dom E
8 f1ssres E : dom E 1-1 x 𝒫 V | x = 2 F dom E E F : F 1-1 x 𝒫 V | x = 2
9 5 7 8 syl2an2r G USGraph N V E F : F 1-1 x 𝒫 V | x = 2
10 usgrumgr G USGraph G UMGraph
11 1 2 3 umgrreslem G UMGraph N V ran E F p 𝒫 V N | p = 2
12 10 11 sylan G USGraph N V ran E F p 𝒫 V N | p = 2
13 f1ssr E F : F 1-1 x 𝒫 V | x = 2 ran E F p 𝒫 V N | p = 2 E F : F 1-1 p 𝒫 V N | p = 2
14 9 12 13 syl2anc G USGraph N V E F : F 1-1 p 𝒫 V N | p = 2
15 ssdmres F dom E dom E F = F
16 6 15 mpbi dom E F = F
17 f1eq2 dom E F = F E F : dom E F 1-1 p 𝒫 V N | p = 2 E F : F 1-1 p 𝒫 V N | p = 2
18 16 17 ax-mp E F : dom E F 1-1 p 𝒫 V N | p = 2 E F : F 1-1 p 𝒫 V N | p = 2
19 14 18 sylibr G USGraph N V E F : dom E F 1-1 p 𝒫 V N | p = 2
20 opex V N E F V
21 4 20 eqeltri S V
22 1 2 3 4 uhgrspan1lem2 Vtx S = V N
23 22 eqcomi V N = Vtx S
24 1 2 3 4 uhgrspan1lem3 iEdg S = E F
25 24 eqcomi E F = iEdg S
26 23 25 isusgrs S V S USGraph E F : dom E F 1-1 p 𝒫 V N | p = 2
27 21 26 mp1i G USGraph N V S USGraph E F : dom E F 1-1 p 𝒫 V N | p = 2
28 19 27 mpbird G USGraph N V S USGraph