Metamath Proof Explorer


Theorem usgrspanop

Description: A spanning subgraph of a simple graph represented by an ordered pair is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 16-Oct-2020)

Ref Expression
Hypotheses uhgrspanop.v V = Vtx G
uhgrspanop.e E = iEdg G
Assertion usgrspanop G USGraph V E A USGraph

Proof

Step Hyp Ref Expression
1 uhgrspanop.v V = Vtx G
2 uhgrspanop.e E = iEdg G
3 vex g V
4 3 a1i G USGraph Vtx g = V iEdg g = E A g V
5 simprl G USGraph Vtx g = V iEdg g = E A Vtx g = V
6 simprr G USGraph Vtx g = V iEdg g = E A iEdg g = E A
7 simpl G USGraph Vtx g = V iEdg g = E A G USGraph
8 1 2 4 5 6 7 usgrspan G USGraph Vtx g = V iEdg g = E A g USGraph
9 8 ex G USGraph Vtx g = V iEdg g = E A g USGraph
10 9 alrimiv G USGraph g Vtx g = V iEdg g = E A g USGraph
11 1 fvexi V V
12 11 a1i G USGraph V V
13 2 fvexi E V
14 13 resex E A V
15 14 a1i G USGraph E A V
16 10 12 15 gropeld G USGraph V E A USGraph