Metamath Proof Explorer


Theorem usgrsscusgr

Description: A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 13-Nov-2020)

Ref Expression
Hypotheses fusgrmaxsize.v V = Vtx G
fusgrmaxsize.e E = Edg G
usgrsscusgra.h V = Vtx H
usgrsscusgra.f F = Edg H
Assertion usgrsscusgr G USGraph H ComplUSGraph e E f F e = f

Proof

Step Hyp Ref Expression
1 fusgrmaxsize.v V = Vtx G
2 fusgrmaxsize.e E = Edg G
3 usgrsscusgra.h V = Vtx H
4 usgrsscusgra.f F = Edg H
5 1 2 3 4 usgredgsscusgredg G USGraph H ComplUSGraph E F
6 dfss5 E F e E f F e = f
7 5 6 sylib G USGraph H ComplUSGraph e E f F e = f