Metamath Proof Explorer


Theorem usgrumgr

Description: A simple graph is an undirected multigraph. (Contributed by AV, 25-Nov-2020)

Ref Expression
Assertion usgrumgr G USGraph G UMGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid iEdg G = iEdg G
3 1 2 usgrfs G USGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2
4 f1f iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2 iEdg G : dom iEdg G x 𝒫 Vtx G | x = 2
5 3 4 syl G USGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x = 2
6 1 2 isumgrs G USGraph G UMGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x = 2
7 5 6 mpbird G USGraph G UMGraph