Database
GRAPH THEORY
Undirected graphs
Undirected simple graphs
usgrumgr
Next ⟩
usgrumgruspgr
Metamath Proof Explorer
Ascii
Unicode
Theorem
usgrumgr
Description:
A simple graph is an undirected multigraph.
(Contributed by
AV
, 25-Nov-2020)
Ref
Expression
Assertion
usgrumgr
⊢
G
∈
USGraph
→
G
∈
UMGraph
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Vtx
⁡
G
=
Vtx
⁡
G
2
eqid
⊢
iEdg
⁡
G
=
iEdg
⁡
G
3
1
2
usgrfs
⊢
G
∈
USGraph
→
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
1-1
x
∈
𝒫
Vtx
⁡
G
|
x
=
2
4
f1f
⊢
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
1-1
x
∈
𝒫
Vtx
⁡
G
|
x
=
2
→
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
|
x
=
2
5
3
4
syl
⊢
G
∈
USGraph
→
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
|
x
=
2
6
1
2
isumgrs
⊢
G
∈
USGraph
→
G
∈
UMGraph
↔
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
|
x
=
2
7
5
6
mpbird
⊢
G
∈
USGraph
→
G
∈
UMGraph