Metamath Proof Explorer


Theorem usgrumgruspgr

Description: A graph is a simple graph iff it is a multigraph and a simple pseudograph. (Contributed by AV, 30-Nov-2020)

Ref Expression
Assertion usgrumgruspgr G USGraph G UMGraph G USHGraph

Proof

Step Hyp Ref Expression
1 usgrumgr G USGraph G UMGraph
2 usgruspgr G USGraph G USHGraph
3 1 2 jca G USGraph G UMGraph G USHGraph
4 eqid Vtx G = Vtx G
5 eqid iEdg G = iEdg G
6 4 5 uspgrf G USHGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x 2
7 umgredgss G UMGraph Edg G x 𝒫 Vtx G | x = 2
8 edgval Edg G = ran iEdg G
9 prprrab x 𝒫 Vtx G | x = 2 = x 𝒫 Vtx G | x = 2
10 9 eqcomi x 𝒫 Vtx G | x = 2 = x 𝒫 Vtx G | x = 2
11 7 8 10 3sstr3g G UMGraph ran iEdg G x 𝒫 Vtx G | x = 2
12 f1ssr iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x 2 ran iEdg G x 𝒫 Vtx G | x = 2 iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2
13 6 11 12 syl2anr G UMGraph G USHGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2
14 4 5 isusgr G UMGraph G USGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2
15 14 adantr G UMGraph G USHGraph G USGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2
16 13 15 mpbird G UMGraph G USHGraph G USGraph
17 3 16 impbii G USGraph G UMGraph G USHGraph