Metamath Proof Explorer


Theorem usgrun

Description: The union U of two simple graphs G and H with the same vertex set V is a multigraph (not necessarily a simple graph!) with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 29-Nov-2020)

Ref Expression
Hypotheses usgrun.g φ G USGraph
usgrun.h φ H USGraph
usgrun.e E = iEdg G
usgrun.f F = iEdg H
usgrun.vg V = Vtx G
usgrun.vh φ Vtx H = V
usgrun.i φ dom E dom F =
usgrun.u φ U W
usgrun.v φ Vtx U = V
usgrun.un φ iEdg U = E F
Assertion usgrun φ U UMGraph

Proof

Step Hyp Ref Expression
1 usgrun.g φ G USGraph
2 usgrun.h φ H USGraph
3 usgrun.e E = iEdg G
4 usgrun.f F = iEdg H
5 usgrun.vg V = Vtx G
6 usgrun.vh φ Vtx H = V
7 usgrun.i φ dom E dom F =
8 usgrun.u φ U W
9 usgrun.v φ Vtx U = V
10 usgrun.un φ iEdg U = E F
11 usgrumgr G USGraph G UMGraph
12 1 11 syl φ G UMGraph
13 usgrumgr H USGraph H UMGraph
14 2 13 syl φ H UMGraph
15 12 14 3 4 5 6 7 8 9 10 umgrun φ U UMGraph