Database
GRAPH THEORY
Undirected graphs
Undirected simple graphs
usgrunop
Metamath Proof Explorer
Description: The union of two simple graphs (with the same vertex set): If
<. V , E >. and <. V , F >. are simple graphs, then
<. V , E u. F >. is a multigraph (not necessarily a simple graph!) -
the vertex set stays the same, but the edges from both graphs are kept,
possibly resulting in two edges between two vertices. (Contributed by AV , 29-Nov-2020)
Ref
Expression
Hypotheses
usgrun.g
⊢ φ → G ∈ USGraph
usgrun.h
⊢ φ → H ∈ USGraph
usgrun.e
⊢ E = iEdg ⁡ G
usgrun.f
⊢ F = iEdg ⁡ H
usgrun.vg
⊢ V = Vtx ⁡ G
usgrun.vh
⊢ φ → Vtx ⁡ H = V
usgrun.i
⊢ φ → dom ⁡ E ∩ dom ⁡ F = ∅
Assertion
usgrunop
⊢ φ → V E ∪ F ∈ UMGraph
Proof
Step
Hyp
Ref
Expression
1
usgrun.g
⊢ φ → G ∈ USGraph
2
usgrun.h
⊢ φ → H ∈ USGraph
3
usgrun.e
⊢ E = iEdg ⁡ G
4
usgrun.f
⊢ F = iEdg ⁡ H
5
usgrun.vg
⊢ V = Vtx ⁡ G
6
usgrun.vh
⊢ φ → Vtx ⁡ H = V
7
usgrun.i
⊢ φ → dom ⁡ E ∩ dom ⁡ F = ∅
8
usgrumgr
⊢ G ∈ USGraph → G ∈ UMGraph
9
1 8
syl
⊢ φ → G ∈ UMGraph
10
usgrumgr
⊢ H ∈ USGraph → H ∈ UMGraph
11
2 10
syl
⊢ φ → H ∈ UMGraph
12
9 11 3 4 5 6 7
umgrunop
⊢ φ → V E ∪ F ∈ UMGraph