Metamath Proof Explorer


Theorem usgrunop

Description: The union of two simple graphs (with the same vertex set): If <. V , E >. and <. V , F >. are simple graphs, then <. V , E u. F >. is a multigraph (not necessarily a simple graph!) - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020)

Ref Expression
Hypotheses usgrun.g φ G USGraph
usgrun.h φ H USGraph
usgrun.e E = iEdg G
usgrun.f F = iEdg H
usgrun.vg V = Vtx G
usgrun.vh φ Vtx H = V
usgrun.i φ dom E dom F =
Assertion usgrunop φ V E F UMGraph

Proof

Step Hyp Ref Expression
1 usgrun.g φ G USGraph
2 usgrun.h φ H USGraph
3 usgrun.e E = iEdg G
4 usgrun.f F = iEdg H
5 usgrun.vg V = Vtx G
6 usgrun.vh φ Vtx H = V
7 usgrun.i φ dom E dom F =
8 usgrumgr G USGraph G UMGraph
9 1 8 syl φ G UMGraph
10 usgrumgr H USGraph H UMGraph
11 2 10 syl φ H UMGraph
12 9 11 3 4 5 6 7 umgrunop φ V E F UMGraph