Metamath Proof Explorer


Theorem usgruspgr

Description: A simple graph is a simple pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 15-Oct-2020)

Ref Expression
Assertion usgruspgr G USGraph G USHGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid iEdg G = iEdg G
3 1 2 isusgr G USGraph G USGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2
4 2re 2
5 4 eqlei2 x = 2 x 2
6 5 a1i x 𝒫 Vtx G x = 2 x 2
7 6 ss2rabi x 𝒫 Vtx G | x = 2 x 𝒫 Vtx G | x 2
8 f1ss iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2 x 𝒫 Vtx G | x = 2 x 𝒫 Vtx G | x 2 iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x 2
9 7 8 mpan2 iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2 iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x 2
10 3 9 syl6bi G USGraph G USGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x 2
11 1 2 isuspgr G USGraph G USHGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x 2
12 10 11 sylibrd G USGraph G USGraph G USHGraph
13 12 pm2.43i G USGraph G USHGraph